

Development of an intelligent system for prediction of inverse
kinematics of robot manipulator

1Jha, P. and 2Biswal, B. B.

National Institute of Technology, Rourkela, Odisha, India
1
jha_ip007@hotmail.com

2
bbbiswal@nitrkl.ac.in

Abstract: - Inverse kinematics comprises the computation need to find the joint angles for

a given Cartesian position and orientation of the end effectors. There is no unique solution
for the inverse kinematics thus necessitating application of artificial neural network models.
This paper proposes three different types of structured artificial neural network (ANN)
models to find the solution of inverse kinematics. The first one is an ANN model which is
MLP (multi-layer perceptron’s) and is popular as back propagation neural network model.
In this gradient descent type of learning rules are applied. The second kind of ANN model
is PPN (polynomial poly-processor neural network) where polynomial equation is used and
the last one is Pi-network.

Keywords: - Robot manipulator, Inverse kinematics, neural network

1. INTRODUCTION

Robot manipulator is composed of a serial

chain of rigid links connected typically to each

other by revolute or prismatic joints. A revolute

joint rotates about a motion axis whereas prismatic

joint slides along a motion axis. Each robot’s joint

location is usually defined relative to the

neighbouring joint. The relation between

successive joints is described by 4X4 homogeneous

transformation matrices that have orientation and

position data of robots. The number of those

transformation matrices determines the degrees of

freedom of robots. The product of such matrices

produces final orientation and position data of an n

degrees of freedom robot manipulator. This is of

fundamental importance in calculating desired joint

angles for robot manipulator design and control. In

most robotic applications the desired positions and

orientations of the end effectors are specified by

the user in Cartesian coordinates. The

corresponding joint values must be computed at

high speed by the inverse kinematics

transformation [1-3]. For a manipulator with n

degree of freedom, at any instant of time joint

variables is denoted by i = (t), i = 1, 2,3n

and position variables xj = x(t), j = 1, 2, 3

.......m.The relations between the end-effectors

position x(t) and joint angle θ(t) can be represented

by forward kinematic equation

))(()(tftx  (1)

Where, f is a nonlinear continuous and

differentiable function. On the other hand, with the

desired end effectors position, the problem of

finding the values of the joint variables is inverse

kinematics, which can be solved by,

))(()(' txft  (2)

Solution of (2) is not unique due to nonlinear,

uncertain and time varying nature of the governing

equations. The different techniques used for

solving inverse kinematics can be classified as

algebraic, geometric and iterative. The algebraic

methods do not guarantee closed form solutions. In

case of geometric methods, closed form solutions

for the first three joints of the manipulator must

exist geometrically.

The iterative methods converge to only a

single solution depending on the starting point and

may not work near singularities [4, 5]. If the joints

of the manipulator are more complex, the inverse

kinematics solution by using these traditional

methods becomes quite time consuming. To

compound the problem further, robots have to work

in the real world that cannot be modelled concisely

using mathematical expressions. In recent years,

there have been increasing research interest of

artificial neural networks and many efforts have

been made on applications of neural networks for

the inverse kinematics problems. The most

mailto:1jha_ip007@hotmail.com
mailto:2bbbiswal@nitrkl.ac.in

significant features of neural networks are the

extreme flexibility due to the learning ability and

the capability of nonlinear functions

approximations. This fact leads us to expect that

neural networks can be an excellent tool for solving

the inverse kinematics problem in robot

manipulators with overcoming the difficulties of

algebraic, geometric and iterative methods [6-11].

Several Neural Network approaches have been

proposed such as MLP (multiple layer perceptrons)

and PPN (Polynomial poly-processor neural

network) method. This unsupervised method learns

the functional relationship between input

(Cartesian) space and output (joint) space based on

a localized adaptation of the mapping, by using the

manipulator itself under joint control and adapting

the solution based on a comparison between the

resulting locations of the manipulator’s end

effectors in Cartesian space with the desired

location. The forward kinematic equations always

have a unique solution, and the resulting Neural net

can be used as a starting point for further

refinement when the manipulator does become

available. Artificial neural network especially MLP

and PPN are used to learn the forward and the

inverse kinematics equations of two degrees

freedom (DOF) robot arm.

A neural network based inverse kinematics

solution method yields multiple and precise

solutions with an acceptable error and it is suitable

for real-time adaptive control of robotic

manipulators. Neural networks were capable of

learning complex functions, which led to their use

in applications including pattern recognition,

function approximation, data fitting, and control of

dynamic systems. The details of inverse kinematics

were briefly discussed as follows.

The objective of the present work is to solve

the inverse kinematic problem of 3R manipulator

using different models of neural network. The

advantage of neural network is that it can be used

in any non-redundant or redundant manipulator.

Most of the problems are dealing with kinematics

control and this paper highlighted one application

on inverses kinematics hence dynamic control not

discussed here. The comparative study and results

presented in this paper indicate the feasibility of

using these ANN for learning complex input/output

relations of robot kinematics control (based on

computation of forward and inverse mapping

between joint space and Cartesian space). The

details of inverse kinematics briefly discussed as

follows. Solution of equation (2) is not unique due

to nonlinear, uncertain and time varying nature of

the governing equations.

2. MATHEMATICAL MODELLING OF

MANIPULATOR

In this section, we consider the traditional

mathematical models for forward kinematics and

inverse kinematics of robot manipulators, only to

build correct model for the proposed neural

network model. The purpose of this application is

to introduce to robot kinematics, and the concepts

related to both open and closed kinematics chains.

The Inverse Kinematics is the opposite problem as

compared to the forward kinematics, forward

kinematics gives the exact solution but in case of

inverse kinematics it gives multiple solutions. The

set of joint variables when added that give rise to a

particular end effectors or tool piece pose. Figure 1

shows the basic joint configuration of 3R planar

manipulator. Position and orientation of the end

effectors can be written in terms of the joint

coordinates in the following way:

Forward kinematics is given by,

)5(

)4()sin()sin(sin

)3()cos()cos(cos

321

321321211

321321211













llly

lllx

ϕ represents orientation of the tool.

All the angles have been measured counter

clockwise and the link lengths are assumed to be

positive going from one joint axis to the

immediately distal joint axis. Equation (3) is a set

of three nonlinear equations that describe the

relationship between end effectors coordinates and

joint coordinates.

The set of equations are given for the end effectors

coordinates in terms of joint coordinates.

Figure 1: 3R manipulator

configuration.

However, to find the joint coordinates for a given

set of end effectors coordinates (x, y, θ); one needs

to solve the nonlinear equations for 321,  and
.

Inverse kinematics,

)6(
2

,)(cos1(2tan

)cos,(sin2tan

21

2

2

2

1

22
2

2

222

ll

llyx
a

a










)7(),(2tan),(2tan 121 kkaxya 

Where,

221

2212

sin

cos





lk

llk





)8(213  

3. ANN APPROACH FOR 3R PLANAR

MANIPULATOR

There are many solutions that are available for

any single point or position of the end effector. We

propose the solution using various ANN models.

The network is trained with data for a number of

end effector positions expressed in Cartesian co-

ordinates and the corresponding joint angles. The

data consist of the different configurations

available for the arm. For the 3R revolute

manipulator, there are various orientations or poses

that are possible for every position of the end

effector in Cartesian space. The different poses of

the arm are then used to train a three-layer, fully

connected back-propagation model (Figure 2). In

this study, various neural-network structures have

been studied, and it was found that when there are

multiple outputs and multiple inputs with hidden

layers, the MLP gives better results. For both

neural-network structures, when the number of

neurons in the hidden layer(s) is equal to the

number of neurons in the input layer, the ANN

generates better results.

Multi-layered perceptron network has a better

ability to learn the correspondence between the

input patterns and teaching values obtained from

many data samples by means of the error back-

propagation algorithm. The model uses the error

back-propagation algorithm. In this study MLP

model with back-propagation is giving better result.

This result in three sets of weights for each

manipulator arm after the training session was

over.

The signals, nh, are presented to a hidden layer

neuron in the network via the input neurons. Each

of the signals from the input neurons is multiplied

by the value of the weights of the connection, wj,

between the respective input neurons and the

hidden neuron. The net input to a hidden neuron is

calculated as the sum of the values for all

connections coming into the neuron [12, 13].

Net input of hidden neurons (for k inputs) =

(9)

The output, omj of a hidden neuron as a function of

its net input. The sigmoid function is:

1

1 h
mj n

Output o

e


 


(10)

Once the outputs of the hidden layer neurons

have been calculated, the net input to each output

layer is calculated in a similar manner as in

equation 9. According to Fig. 2, the model of the 3-

layer perceptron neural network state calculation is

combined with backward error propagation and

weight adjustment calculations that represent the

network’s learning, or training.

'

()()mn d of  

 (11)

And from equation 11:

(1)()m m mo o d o   
 (12)

 Where, d is the target or desired value,

and om is the actual value from output neuron

after going through the feed forward calculation.

The error calculation was implemented on a

neuron-by-neuron basis over the entire set

(epoch) of patterns.

1

k

h j jn

j

n w o


 

Figure 2: Block Diagram of the System using

ANN.

This error value, , was used to perform the

appropriate weight adjustments of the weight

connection between the output layer and hidden

layer.

0 0

'() (1)
l lk k

h h lh l h h lh l

l l

f n w o o w  
 

   

(13)

Where, h is the error value of the hidden

layer, l is the error value of the output layer, oh is

the output of the sigmoid function and wlh is the

connection weights between the output and

hidden layers. The weight changes were

calculated according to equation 14.

w(old) = w(new) + o + [w(old)] (14)

The speed of convergence of the network

depends on the training rate, , and the

momentum factor, .
In this work, a two hidden layer neural

network with two inputs, x,and y, and three

outputs, 321,  and was trained using the

back-propagation algorithm described earlier,

this was done along a trajectory of the end-

effector in the xy -plane.

4. PPN AND Pi-NETWORK

FORMULATION

Weierstrass approximation theorem states that any

function which is continuous in a closed interval

can be uniformly approximated within any

prescribed tolerance over that interval by some

polynomial. Figure 3 depicts a PPN network where

X is the input pattern given by

T

mxxxxX],,[321 

Considering a two-dimensional pattern X= [x1 x2]’

and polynomial order 2, the decision function X

may be written as

TT XWXDF )(

Where,
TwwxxwW],,,,[2112110 and

TxxxxxxX],,,,,,1[212
2

211
2* 

The general quadratic case can be formed by

considering all combination of components of X

which forms terms of degree two or less. Thus, for

an M-dimensional pattern,

*

0

1

1

1 1 1

2)(XWwxwxxwxwXDF T
M

J

M

j

M

jk

M

j

jjkjjkjjjj   




  

The number of terms needed to describe a

polynomial decision function grows rapidly as the

polynomial degree r and the dimension M of the

pattern increases. For the M-dimensional case, the

number of coefficients in a function of r
th

 degree is

given by

!!

)!(

rM

rM
CN r

rM

M r


 

The input pattern X to the PPN at time n is the

channel output vector X (n). This is then converted

into X*(n) by passing it into a polynomial

preprocessor. The weighted sum of the components

of X*(n) is passed through a nonlinear function

sigmoid and pure linear function to produce the

output as shown in figure 3. The output of the PPN

is compared with the desired response (d) to

generate an error which is then used to update its

weights by the BP algorithm.

Similarly in case of Pi-network the basic

difference is polynomial equation is multiplied by

Π=3.14.

5. SIMULATION RESULTS AND

PERFORMANCE ANALYSIS OF MLP,

PPN AND π-NETWORK

Three different models have been taken for the

validation of the results and the models are: MLP

(Multi-layer perceptron), PPN (Polynomial

perceptron network) and π-network which are

considered for the analysis of inverse kinematics

problem, simulation studies are carried out by

using MATLAB.

Figure 3: Polynomial perceptron network.

Figure 4: Comparison of desired and predicted value of joint angles for first configuration

using MLFF model

Figure 5: Comparison of desired and predicted value of joint angles for second configuration

using MLFF model

Figure 6: Comparison of desired and predicted value of joint angles for third configuration

 using MLFF model

Training data sets were generated by using

equation (6, 7 and 8). A set of 1000 data sets were

first generated as per the formula for this the input

parameter X and Y coordinates in meters. These

data sets were basis for the training and evaluation

or testing the ANN models. Out of the sets of 1000

data points, 900 were used as training data and 100

were used for testing for ANN models.

Figure 7: mean square error for joint angles using PPN model

Back-propagation algorithm was used for

training the network and for updating the desired

weights. In this work epoch based training method

was applied. The comparison of desired and

predicted value of joint angles of MLP model for

100 epochs for
321,  and has been represented in

Figure 4, 5 and 6. In this work three configurations

have been taken for the better result. Figure 4

depicts the configuration which is giving better

result as considered other configuration.

Figure 8: mean square error for joint angles using π-network model

To test the stability of the MLP two other

models i.e. PPN and Pi-network models have been

studied. Figure 5 (a), (b) and (c) shows the mean

square error of joint angles using PPN network

which gives relative poor result as compared to

MLP model and in case of Pi-network the obtained

result is also poor to compare with MLP as shown

in figure 6 (a), (b) and (c).

6. CONCLUSION

ANN is based on the input/output data pairs to

determine the structure and parameters of the

model. Moreover, they can always be updated to

obtain better results by presenting new training

examples as new data become available. This

artificial neural network based joint angles

prediction models can be a useful to estimate the

position of the manipulator accurately. The results

with the ANNs are better than for the other model

mentioned earlier. The computation using an ANN

is particularly useful where shorter calculation

times are required, such as in this problem. In the

future, data obtained from sensors will be able to

be fed directly to the ANN, to carry out these

calculations.From the present study, it is observed

that the MLP gives better results for inverse

kinematics problem considering the average

percentage error as performance index.

REFERENCES

1. Koker R et al., “Study of neural network

based inverse kinematics solution for a three-

joint robot”, Robotics and Autonomous

Systems (2004), 49, pp. 227–234.

2. Shital S, Chiddarwar N and Ramesh B.,

2010. “Comparison of RBF and MLP neural

networks to solve inverse kinematic problem

for 6r serial robot by a fusion approach”,

Engineering Applications of Artificial

Intelligence, 23 pp.1083–1092.

3. Koker R., 2005. “Reliability-based approach

to the inverse kinematics solution of robots

using elman’s networks”, Engineering

Applications of Artificial Intelligence 18 pp.

685–693.

4. Husty M L, Pfurner M and Schrocker H P.,

2007. “ A new and efficient algorithm for the

inverse kinematics of a general serial 6r

manipulator”, Mechanism and Machine

Theory 42 pp. 66-81

5. Mayorga R V and Sanongboon P., 2005.

“Inverse kinematics and geometrically

bounded singularities prevention of redundant

manipulators: an artificial neural network

approach”, Robotics and Autonomous

Systems 53 pp. 164–176.

6. Xie J et al., 2007. “Inverse kinematics

problem for 6-dof space manipulator based on

the theory of screws”, Proceedings of the 2007

IEEE International Conference on Robotics

and Biomimetic December 15 -18, 2007,

Sanya, China.

7. Hasan A et al., 2006. “An adaptive-learning

algorithm to solve the inverse kinematics

problem of a 6 D.O.F serial robot

manipulator”, Advances in Engineering

Software 37 pp. 432–438.

8. Mitsi S, Bouzakis K D and Mansour G.,

1995. “Optimization of robot link motion in

inverse kinematic solution considering

collision avoidance and joint limit”, Mech.

Much, Theory, 30 (5) pp. 653-663.

9. Karlik B and Aydin., 2000. “An improved

approach to the solution of inverse kinematics

problems for robot manipulators”,

Engineering Applications of Artificial

Intelligence 13 pp. 159-164.

10. S. Morris and A. Mansor., 1997. “Artificial

neural network for finding inverse kinematics

of robot manipulator using look up table”,

Robotica, 15, pp. 617 – 625.

11. Hasan A et al., 2010. “Artificial neural

network-based kinematics jacobian solution for

serial manipulator is passing through singular

configurations”, Advances in Engineering

Software, 41 pp. 359–367.

12. Olaru A et al., 2011. “Assisted research and

optimization of the proper neural network

solving the inverse kinematics problem”,

Proceedings of 2011 International Conference

on Optimization of the Robots and

Manipulators.

13. Alavandar, S and Nigam, M. J., 2008.
“Neuro-fuzzy based approach for inverse

kinematics solution of industrial robot

manipulators”, Int. J. of Computers,

Communications & Control, 3, pp. 224-234.

