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Abstract: - Inverse kinematics comprises the computation need to find the joint angles for 

a given Cartesian position and orientation of the end effectors. There is no unique solution 
for the inverse kinematics thus necessitating application of artificial neural network models. 
This paper proposes three different types of structured artificial neural network (ANN) 
models to find the solution of inverse kinematics. The first one is an ANN model which is 
MLP (multi-layer perceptron’s) and is popular as back propagation neural network model. 
In this gradient descent type of learning rules are applied. The second kind of ANN model 
is PPN (polynomial poly-processor neural network) where polynomial equation is used and 
the last one is Pi-network.   
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1. INTRODUCTION 

 

Robot manipulator is composed of a serial 

chain of rigid links connected typically to each 

other by revolute or prismatic joints. A revolute 

joint rotates about a motion axis whereas prismatic 

joint slides along a motion axis. Each robot’s joint 

location is usually defined relative to the 

neighbouring joint. The relation between 

successive joints is described by 4X4 homogeneous 

transformation matrices that have orientation and 

position data of robots. The number of those 

transformation matrices determines the degrees of 

freedom of robots. The product of such matrices 

produces final orientation and position data of an n 

degrees of freedom robot manipulator. This is of 

fundamental importance in calculating desired joint 

angles for robot manipulator design and control. In 

most robotic applications the desired positions and 

orientations of the end effectors are specified by 

the user in Cartesian coordinates. The 

corresponding joint values must be computed at 

high speed by the inverse kinematics 

transformation [1-3]. For a manipulator with n 

degree of freedom, at any instant of time joint 

variables is denoted by i = (t), i = 1, 2,3 .........n 

and position variables xj = x(t), j = 1, 2, 3 

.......m.The relations between the end-effectors 

position x(t) and joint angle θ(t) can be represented 

by forward kinematic equation 
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Where, f is a nonlinear continuous and 

differentiable function. On the other hand, with the 

desired end effectors position, the problem of 

finding the values of the joint variables is inverse 

kinematics, which can be solved by, 
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Solution of (2) is not unique due to nonlinear, 

uncertain and time varying nature of the governing 

equations. The different techniques used for 

solving inverse kinematics can be classified as 

algebraic, geometric and iterative. The algebraic 

methods do not guarantee closed form solutions. In 

case of geometric methods, closed form solutions 

for the first three joints of the manipulator must 

exist geometrically.  

The iterative methods converge to only a 

single solution depending on the starting point and 

may not work near singularities [4, 5]. If the joints 

of the manipulator are more complex, the inverse 

kinematics solution by using these traditional 

methods becomes quite time consuming. To 

compound the problem further, robots have to work 

in the real world that cannot be modelled concisely 

using mathematical expressions. In recent years, 

there have been increasing research interest of 

artificial neural networks and many efforts have 

been made on applications of neural networks for 

the inverse kinematics problems. The most 
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significant features of neural networks are the 

extreme flexibility due to the learning ability and 

the capability of nonlinear functions 

approximations. This fact leads us to expect that 

neural networks can be an excellent tool for solving 

the inverse kinematics problem in robot 

manipulators with overcoming the difficulties of 

algebraic, geometric and iterative methods [6-11]. 

Several Neural Network approaches have been 

proposed such as MLP (multiple layer perceptrons) 

and PPN (Polynomial poly-processor neural 

network) method. This unsupervised method learns 

the functional relationship between input 

(Cartesian) space and output (joint) space based on 

a localized adaptation of the mapping, by using the 

manipulator itself under joint control and adapting 

the solution based on a comparison between the 

resulting locations of the manipulator’s end 

effectors in Cartesian space with the desired 

location. The forward kinematic equations always 

have a unique solution, and the resulting Neural net 

can be used as a starting point for further 

refinement when the manipulator does become 

available. Artificial neural network especially MLP 

and PPN are used to learn the forward and the 

inverse kinematics equations of two degrees 

freedom (DOF) robot arm.  

A neural network based inverse kinematics 

solution method yields multiple and precise 

solutions with an acceptable error and it is suitable 

for real-time adaptive control of robotic 

manipulators. Neural networks were capable of 

learning complex functions, which led to their use 

in applications including pattern recognition, 

function approximation, data fitting, and control of 

dynamic systems. The details of inverse kinematics 

were briefly discussed as follows.  

The objective of the present work is to solve 

the inverse kinematic problem of 3R manipulator 

using different models of neural network. The 

advantage of neural network is that it can be used 

in any non-redundant or redundant manipulator. 

Most of the problems are dealing with kinematics 

control and this paper highlighted one application 

on inverses kinematics hence dynamic control not 

discussed here. The comparative study and results 

presented in this paper indicate the feasibility of 

using these ANN for learning complex input/output 

relations of robot kinematics control (based on 

computation of forward and inverse mapping 

between joint space and Cartesian space). The 

details of inverse kinematics briefly discussed as 

follows. Solution of equation (2) is not unique due 

to nonlinear, uncertain and time varying nature of 

the governing equations. 

2. MATHEMATICAL MODELLING  OF 

MANIPULATOR 

In this section, we consider the traditional 

mathematical models for forward kinematics and 

inverse kinematics of robot manipulators, only to 

build correct model for the proposed neural 

network model. The purpose of this application is 

to introduce to robot kinematics, and the concepts 

related to both open and closed kinematics chains. 

The Inverse Kinematics is the opposite problem as 

compared to the forward kinematics, forward 

kinematics gives the exact solution but in case of 

inverse kinematics it gives multiple solutions. The 

set of joint variables when added that give rise to a 

particular end effectors or tool piece pose. Figure 1 

shows the basic joint configuration of 3R planar 

manipulator. Position and orientation of the end 

effectors can be written in terms of the joint 

coordinates in the following way: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forward kinematics is given by, 
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ϕ represents orientation of the tool. 

All the angles have been measured counter 

clockwise and the link lengths are assumed to be 

positive going from one joint axis to the 

immediately distal joint axis. Equation (3) is a set 

of three nonlinear equations that describe the 

relationship between end effectors coordinates and 

joint coordinates.  

 

The set of equations are given for the end effectors 

coordinates in terms of joint coordinates.  

 

 

Figure 1: 3R manipulator 

configuration. 



However, to find the joint coordinates for a given 

set of end effectors coordinates (x, y, θ); one needs 

to solve the nonlinear equations for 321,  and
. 

Inverse kinematics, 
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3. ANN APPROACH FOR 3R PLANAR 

MANIPULATOR 

 

There are many solutions that are available for 

any single point or position of the end effector. We 

propose the solution using various ANN models. 

The network is trained with data for a number of 

end effector positions expressed in Cartesian co-

ordinates and the corresponding joint angles. The 

data consist of the different configurations 

available for the arm. For the 3R revolute 

manipulator, there are various orientations or poses 

that are possible for every position of the end 

effector in Cartesian space. The different poses of 

the arm are then used to train a three-layer, fully 

connected back-propagation model (Figure 2). In 

this study, various neural-network structures have 

been studied, and it was found that when there are 

multiple outputs and multiple inputs with hidden 

layers, the MLP gives better results. For both 

neural-network structures, when the number of 

neurons in the hidden layer(s) is equal to the 

number of neurons in the input layer, the ANN 

generates better results. 

 

Multi-layered perceptron network has a better 

ability to learn the correspondence between the 

input patterns and teaching values obtained from 

many data samples by means of the error back-

propagation algorithm. The model uses the error 

back-propagation algorithm. In this study MLP 

model with back-propagation is giving better result. 

This result in three sets of weights for each 

manipulator arm after the training session was 

over.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The signals, nh, are presented to a hidden layer 

neuron in the network via the input neurons. Each 

of the signals from the input neurons is multiplied 

by the value of the weights of the connection, wj, 

between the respective input neurons and the 

hidden neuron. The net input to a hidden neuron is 

calculated as the sum of the values for all 

connections coming into the neuron [12, 13].  

 

Net input of hidden neurons (for k inputs) =  

  

 
(9) 

    

The output, omj of a hidden neuron as a function of 

its net input. The sigmoid function is: 
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Once the outputs of the hidden layer neurons 

have been calculated, the net input to each output 

layer is calculated in a similar manner as in 

equation 9. According to Fig. 2, the model of the 3- 

layer perceptron neural network state calculation is 

combined with backward error propagation and 

weight adjustment calculations that represent the 

network’s learning, or training.  

    
'

( )( )mn d of  
 

  (11)
 

      

And from equation 11: 
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 Where, d is the target or desired value, 

and om is the actual value from output neuron 

after going through the feed forward calculation. 

The error calculation was implemented on a 

neuron-by-neuron basis over the entire set 

(epoch) of patterns.  
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Figure 2: Block Diagram of the System using 

ANN. 

 



This error value, , was used to perform the 

appropriate weight adjustments of the weight 

connection between the output layer and hidden 

layer.  
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Where, h is the error value of the hidden 

layer, l is the error value of the output layer, oh is 

the output of the sigmoid function and wlh is the 

connection weights between the output and 

hidden layers. The weight changes were 

calculated according to equation 14. 

w(old) = w(new) + o + [w(old)] (14) 

The speed of convergence of the network 

depends on the training rate, , and the 

momentum factor, .  
In this work, a two hidden layer neural 

network with two inputs, x,and y,  and three 

outputs, 321,  and was trained using the 

back-propagation algorithm described earlier, 

this was done along a trajectory of the end-

effector in the xy -plane.  

4. PPN AND Pi-NETWORK 

FORMULATION 

Weierstrass approximation theorem states that any 

function which is continuous in a closed interval 

can be uniformly approximated within any 

prescribed tolerance over that interval by some 

polynomial. Figure 3 depicts a PPN network where 

X  is the input pattern given by  
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Considering a two-dimensional pattern X= [x1 x2]’ 

and polynomial order 2, the decision function X 

may be written as  
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The general quadratic case can be formed by 

considering all combination of components of X 

which forms terms of degree two or less. Thus, for 

an M-dimensional pattern, 
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The number of terms needed to describe a 

polynomial decision function grows rapidly as the 

polynomial degree r and the dimension M of the 

pattern increases. For the M-dimensional case, the 

number of coefficients in a function of r
th

 degree is 

given by  
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The input pattern X to the PPN at time n is the 

channel output vector X (n). This is then converted 

into X*(n) by passing it into a polynomial 

preprocessor. The weighted sum of the components 

of X*(n) is passed through a nonlinear function 

sigmoid and pure linear function to produce the 

output as shown in figure 3. The output of the PPN 

is compared with the desired response (d) to 

generate an error which is then used to update its 

weights by the BP algorithm. 

Similarly in case of Pi-network the basic 

difference is polynomial equation is multiplied by 

Π=3.14.  

5. SIMULATION RESULTS AND 

PERFORMANCE ANALYSIS OF MLP, 

PPN AND π-NETWORK 

Three different models have been taken for the 

validation of the results and the models are: MLP 

(Multi-layer perceptron), PPN (Polynomial 

perceptron network) and π-network which are 

considered for the analysis of inverse kinematics 

problem, simulation studies are carried out by 

using MATLAB. 

 

 

 

 

Figure 3: Polynomial perceptron network. 



 

Figure 4: Comparison of desired and predicted value of joint angles for first configuration 

using MLFF model 

 

 

Figure 5: Comparison of desired and predicted value of joint angles for second configuration  

using MLFF model 

Figure 6: Comparison of desired and predicted value of joint angles for third configuration 

 using MLFF model

Training data sets were generated by using 

equation (6, 7 and 8). A set of 1000 data sets were 

first generated as per the formula for this the input 

parameter X and Y coordinates in meters. These 



data sets were basis for the training and evaluation 

or testing the ANN models. Out of the sets of 1000 

data points, 900 were used as training data and 100 

were used for testing for ANN models. 

 

 

 

Figure 7: mean square error for joint angles using PPN model 

 

Back-propagation algorithm was used for 

training the network and for updating the desired 

weights. In this work epoch based training method 

was applied. The comparison of desired and 

predicted value of joint angles of MLP model for 

100 epochs for 
321,  and  has been represented in 

Figure 4, 5 and 6. In this work three configurations 

have been taken for the better result. Figure 4 

depicts the configuration which is giving better 

result as considered other configuration.  

Figure 8: mean square error for joint angles using π-network model 

 

To test the stability of the MLP two other 

models i.e. PPN and Pi-network models have been 

studied. Figure 5 (a), (b) and (c) shows the mean 

square error of joint angles using PPN network 

which gives relative poor result as compared to 

MLP model and in case of Pi-network the obtained 

result is also poor to compare with MLP as shown 

in figure 6 (a), (b) and (c).  

6. CONCLUSION 

ANN is based on the input/output data pairs to 

determine the structure and parameters of the 

model. Moreover, they can always be updated to 

obtain better results by presenting new training 

examples as new data become available. This 



artificial neural network based joint angles 

prediction models can be a useful to estimate the 

position of the manipulator accurately. The results 

with the ANNs are better than for the other model 

mentioned earlier. The computation using an ANN 

is particularly useful where shorter calculation 

times are required, such as in this problem. In the 

future, data obtained from sensors will be able to 

be fed directly to the ANN, to carry out these 

calculations.From the present study, it is observed 

that the MLP gives better results for inverse 

kinematics problem considering the average 

percentage error as performance index.  
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