
1 INTRODUCTION 

Laminated composites are important not only their 
load carrying capacity is higher but they have higher 
strength/stiffness to weight ratio and are also capable 
to carry certain amount of thermal load. In general, 
when the structures are exposed to thermal environ-
ment, the original geometry of the structure gets dis-
torted and this has an adverse effect on its behaviour. 
Many researchers have been reported in literature on 
nonlinear vibration of laminated plates/panels in 
thermal environment. The mathematical models are 
developed based on various theories such as classical 
laminated plate theory (CLPT), first order shear de-
formation theory (FSDT) and higher order shear de-
formation theory (HSDT) considering the nonlinear-
ity in von-Karman nonlinearity. Liu & Huang (1996) 
studied the nonlinear free vibration behavior of 
laminated plates. The mathematical model is devel-
oped based on the FSDT and the nonlinearity is con-
sidered in von-Karman sense. Lal & Singh (2009) 
studied the stochastic vibration behavior of lami-
nated plates resting elastic foundation in thermal en-
vironment. The model is developed based on the 
HSDT and the nonlinearity is taken in von-Karman 
sense. Sairam & Sinha (1992) reported the effect of 
temperature and moisture on the vibration behavior 
of laminated plates. Ohnabe (1995) investigated 
heated orthotropic sandwich plates and shallow 
shells due to the temperature difference between the 
upper and lower face with von-Karman nonlinearity. 
Nanda & Pradyumna (2011) reported the nonlinear 
free and transient responses of the cylindri-

cal/spherical panels with imperfection under hy-
grothermal loading. The model is developed based 
on the FSDT and the von-Karman type nonlinearity. 
Naidu & Sinha (2007) studied the nonlinear free vi-
bration behavior of laminated composite shells in 
hygrothermal environment. The model is developed 
based on the FSDT and the Green-Lagrange type 
nonlinearity. Bhimraddi & Chandrasekhar (1993) re-
ported buckling, postbuckling and nonlinear vibra-
tion of heated angle-ply laminated plates based on 
the parabolic shear deformation theory and von-
Karman type nonlinearity. Panda & Singh (2009) re-
ported nonlinear free vibration response of laminated 
composite shells. The authors are the first to develop 
a novel model based on the HSDT and Green-
Lagrange type nonlinearity. In their study they have 
considered all the nonlinear higher order terms to 
predict the original flexure of the structure. A 
mathematical model for cylindrical panel based on 
the higher order shear deformation theory is used in 
their approach. The geometric nonlinearity of Green-
Lagrange type is introduced through the strain dis-
placement relation of the panel and all the nonlinear 
higher order terms are included in the formulation. A 
uniform temperature load is considered through the 
thickness. It is assumed that the material properties 
are invariant with temperature.  
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 ABSTRACT: Geometrically nonlinear free vibration behaviour of laminated composite cylindrical panel in 
thermal environment is analysed. The mid-plane kinematics is based on the higher order shear deformation 
theory and the geometric nonlinearity is introduced in the strain displacement relation using Green-Lagrange 
type nonlinearity. The sets of governing equations are obtained using Hamilton’s principle and discretised us-
ing a nonlinear finite element approach. The results obtained using the proposed model is compared with 
those available in open literature.  



2 MATHEMATICAL MODELLING 

2.1 Geometry and midplane kinematics 

A cylindrical shell panel is assumed, which is com-
posed of N number of anisotropic layers of uniform 
thickness (Figure 1). The panel has length a, width b 
and thickness h. The orthogonal curvilinear coordi-
nate system is assumed for this study such that ξ1=R 
is the curvature with mid surface, ξ2 =∞ and ζ = 0 
and ζ -curves are straight line perpendicular to the 
surface ζ = 0 for the curved panels the lines of curva-
ture coincide with the coordinate lines (Reddy 
1997). The ζk and ζ k-1 be the top and bottom ζ-
coordinates of the kth lamina. The displacement field 
for laminated panel considered to derive the mathe-
matical model is based on the HSDT (Panda & 
Singh, 2009). 
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where, ( ), ,u v w are the displacements along the 

( )1 2, ,ξ ξ ζ coordinates at any point of the panel, 

( ), ,u v w  are the displacements of a points on the 

mid-plane of the panel and 1φ and 2φ are the rota-

tions at 0ζ =  of normal to the mid-plane with re-

spect to the2ξ and 1ξ -axes, respectively.1ψ , 2ψ , 1θ  

and 2θ  are higher order terms of Taylor series ex-

pansion defined at the mid-plane. The assumed dis-
placement field in the above equation represents the 
transverse shear strains as quadratic function of 
thickness coordinate, ζ and satisfies the require-
ment of zero transverse normal strain. 

 

 

 

 

 

 

 

2.2 Strain displacement relation 

The nonlinear strain displacement relation for gen-
eral laminated curved panel is same as Panda & 
Singh (2009). 

{ } { } { }L NLε ε ε= +               (2)   

where, { }Lε and { }NLε are the linear and the nonlin-

ear strain vectors, respectively. Individual strain 
terms are obtained by substituting Eq. (1) into Eq. (2) 
and expressed as: 
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The terms contained in { }Lε  and { }NLε having su-

perscripts 0, 1, 2, 3, and 4, 5, 6, 7, 8, 9, 10 are the 
bending, curvature and higher order terms (Panda & 
Singh, 2009). [ ]H  is the function of thickness co-

ordinate.  

2.3 Stress-strain relation 

Thermo-elastic constitutive relation under tempera-
ture field for any general kth orthotropic composite 
lamina having an arbitrary fibre orientation angle 
with reference to the coordinate axes (1, 2 & 3). 

{ } { }kk k
Q Tσ ε α = − ∆             (4) 

where, { } { }1 2 6 5 4

Tkσ σ σ σ σ σ=  is the total 

stress vector measured at the stress free state, 

{ } { }1 2 6 5 4

k Tε ε ε ε ε ε=  is the strain vector, 
k

Q    are the transferred reduced stiffness matrix  

and { } { }1 2 12

k T

m m mm
α α α α=  the transformed 

thermal expansion coefficient vector for the kth layer 
respectively.  T∆  is the uniform temperature dif-
ference. 

Thermal in-plane forces can be obtained by integrat-
ing the equation (5) over the thickness of the shell 
panel and can be expressed in matrix form as follows 
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Figure1. Laminated composite cylindrical panel 
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where, { }tN∆ , { }tM ∆  and { }tP∆ , are the resultant 

vectors of compressive in-plane forces, moments and 
the higher order terms due to the temperature differ-
ence ( )T∆  in composite matrix.  

2.4 Strain energy of the laminate 

The strain energy of the heated curved panel can be 
written as: 

{ } { }1

2
T

v
U dVε σ= ∫               (6) 

The energy will be obtained by substituting the val-
ues of stresses and strains from Eq. (3) and (4) in Eq. 
(6).  

2.5 Kinetic energy of the laminate 

The kinetic energy expression of a vibrated panel 
can be written as 
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where,ρ , { }δ  and { }δɺ  are the density, dis-

placement vector and the first order differential of 
displacement with respect to time, respectively. 

The global displacement vector can be expressed as 
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u v w fδ δ= =           (8) 

Where, [ ]f is the function of thickness coordinate. 

The kinetic energy for ‘N’ number of orthotropic 
layered composite shell panel will be 
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2.6 Work done due to the temperature field 

The work done ( )W due to the in-plane compressive 

thermal force resultants { }tN∆  in Green-Lagrange 

sense for the curved panel can be obtained in similar 
fashion as in Eq. (6)  

[ ]{ }G t

V
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where, { }Gε is the geometric strain vector. 

The expression as given in Eq. (10) can be rear-
ranged to the following form as given in Cook et al. 
(2000)   
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The values of the geometric strain vector{ }Gε , the 

material property matrix [ ]DG  and the evaluation 

steps can be seen in the Panda & Singh (2010). 

3 SOLUTION TECHNIQUE 

3.1 Finite element formulation 

A nine noded isoparametric Lagrangian element with 
eighty one degrees of freedom (DOFs) per element is 
employed for the present analysis. The details of the 
element can be seen in the reference Cook et al. 
(2000) 

The displacement vector 

( ) T*
1 2 1 2 1 2u v wδ φ φ ψ ψ θ θ=    Can be 

presented to the form by employing FEM  

{ } { }* *Ni iδ δ =                       (12) 

where, [ ]iN   and { }iδ  is the nodal interpolation 

function and displacement vector forthi  node, re-
spectively. 



Substituting Eq. (12) into equations (6) and (11) the 
strain energy and the work done expressions can be 
rewritten as   
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where, [ ]BL  and [ ]BG  are the product form of the 

differential operator and nodal interpolation function 
in the linear strain terms and geometric strain terms, 
respectively. [ ]A  is function of the displacements 

and [ ]G is the product form of differential operator 

and shape function in the nonlinear strain terms. The 
expressions of [ ]A  and [ ]G  arising due to the 

Green-Lagrange nonlinearity in the nonlinear stiff-
ness matrices are given in details in the literature 
Panda and Singh (2009). F t∆  is the thermal load 

vector due to the temperature differenceT∆ . 

3.2 Governing equation 

The governing equation for the free vibrated com-
posite panel under thermal loading is obtained by us-
ing Hamilton’s principle. This result in 

2

1

dt 0
t

t
Lδ =∫                 (15) 

where, = ( )L T +U -W t∆   

Using Eqs. (6)- (14), Eq. (15) can be expressed fol-
lowing the procedure as given in Sundermurthy et al. 
(1973) 
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where, [M] is the global mass matrix, [KL] is the 
global linear stiffness matrix, [KNL]  1 and [KNL]  2 are 
the nonlinear mixed stiffness matrices which depend 

on the displacement vector linearly and quadratically, 
respectively. 

In order to obtain an eigenvalue solution of the 
nonlinear responses the Eq. (16) is modified as fol-
lows: 
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where, [KG] is the global geometry stiffness matrix. 
It is obtained by dropping the thermal force in the Eq. 
(16) and the effect due to that is associated with the 
governing equation in terms of geometry matrix. The 
above matrix equations (16) have been solved by 
employing a direct iterative method to obtain the de-
sired output. The steps to obtain the output of for any 
general case of nonlinear analysis are discussed 
point wise fashion in the reference (Panda & Singh 
2009).  

4. RESULTS AND DISCUSSION 

In this section the nonlinear free vibration behaviour 
of laminated composite cylindrical panel is per-
formed for different geometric and material proper-
ties. A computer code has been developed in MAT-
LAB 7.0 based on the proposed nonlinear model. In 
order to probe the efficacy of the present nonlinear 
model different comparisons have been made with 
von-Karman nonlinearity based on the FSDT/HSDT 
midplane kinematics. In this study the material prop-
erties of composites are assumed to be invariant with 
temperature. 
For the comparison purpose, the geometry, the mate-
rial and the stacking sequences are taken as same as 
the references. The non-dimensional linear fre-
quency ( )( )1

22
2L La E hϖ ω= ρ  and the nonlinear fre-

quency parameters are presented in the Table 1. It 
can be easily viewed from the table that the differ-
ence exists within one percent for both linear and 
nonlinear cases. It can be seen in the difference col-
umn that the results shows in between point i.e., it is 
higher than Lal & Singh (2009) and lower than Liu 
& Huang (1996). It is because of the fact that, the 
former one is based on the FSDT with von-Karman 
nonlinearity; however, the latter one is based on the 
HSDT with von-Karman nonlinearity. Hence, the 
present model which is developed on based on the 
HSDT with Green-Lagrange type nonlinearity is 
necessary to predict the real responses. Some new 
results are also generated for different parameters 
and discussed in detailed. 
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Example: 1 

A simply supported square symmetric and anti-
symmetric cross ply cylindrical panel problem is 
solved using the material properties E2 = 1GPa, E1/ 
E2 = 40, G12/ E2 = 0.6, G23/ E2 = 0.5, G12 = G13, ν12 
= 0.25, α0 = 10-6/0 C, α1/ α2 = 0.3 and geometrical 
property R/a = 100 for a temperature gradient ∆T = 
500 C. The effect of thickness ratios, lamination 
schemes and amplitude ratios on the nonlinear free 
vibration responses are shown in Figure 2. The non-
dimensional fundamental linear frequency increases 
with increase in thickness ratio which is obvious. It 
can be observed from the figure that the nonlinear 
frequency parameters are increasing with increase in 
amplitude ratios and thickness ratios. It is also inter-
esting to observe that both the linear and the nonlin-
ear frequency parameters are showing higher values 
for symmetric cross-ply lamination in comparison to 
anti-symmetric lamination.  

Example: 2 

In this example, effect of aspect ratio on the nonlin-
ear frequency parameter on antisymmetric angle ply 
cylindrical panel is analysed and presented in Table 
2. The material properties are same as in Example 1. 
The geometrical properties are a/h = 100, R/a = 20 
and all four sides of the panel is considered as 
simply supported.  The set of results are obtained 
for two temperature gradients ∆T = 00C and 1000C. 
Results demonstrate that, the linear and the nonlinear 
frequency parameters are increasing with increase in 
the temperature gradient, amplitude ratio and the as-
pect ratios. The responses are also increasing when 
the numbers of layers are increasing. It can be de-
picted from the table that, the non-dimensional linear 
frequencies are higher for anti symmetric laminates 
and the nonlinear frequency parameters are higher 
for symmetric laminates. The responses for a/b = 1.0 
shows a mixed type of behavior i.e., the nonlinear 

frequency parameter increases with increase in 
Wmax/h= 0.5 to 1.0 and then decreases at Wmax/h =1.5 
for both the temperature gradient. This is happens 
due to the present nonlinear model where all the 
higher order term is considered in the mathematical 
formulation. 
 
5. CONCLUSIONS 

The nonlinear free vibration behaviour of laminated 
composite cylindrical panel has been studied using 
the proposed nonlinear model. The geometrical 
nonlinearity is modeled in Green-Lagrange sense in-
corporating all the nonlinear higher order terms aris-
ing in the mathematical formulation based on the 
HSDT. The validation study shows the necessity of 
present nonlinear model for the more accurate analy-
sis of nonlinear responses of the structures for large 
amplitude free vibration under uniform thermal load-
ing. The nonlinear frequency parameter of simply 
supported cylindrical panel increases with thickness 
ratio, amplitude ratio and aspect ratios. The results 
also show mixed type of behavior for the amplitude 
ratios and angle ply laminations. 
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Table 1. Comparison study of nondimensionalised linear 
and nonlinear vibration frequencies 

Wmax/h Present 
Liu & 
Huang 
(1996) 

Lal & 
Singh 
(2009) 

% Difference 

Liu & 
Huang 
(1996) 

Lal & 
Singh 
(2009) 

0.1 15.1188 15.160 15.0985 -0.27 0.13 
0.2 15.1738 15.195 15.1543 -0.64 0.12 
0.3 15.2217 15.272 15.2424 -0.33 -0.14 

Lϖ  15.1003 15.160 15.0794 -0.39 0.14 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Effect of aspect ratio on the nonlinear vibration 
ratio on symmetric and antisymmetric angle ply lami-
nates. 

Lay up  ∆T0C Wmax/h 
Aspect Ratio (a/b) 

1.0 1.5 2.0 

[±450]1 

0 
0.5 24.0919 30.8757 39.7122 
1.0 29.7149 36.2996 46.0560 
1.5 26.5391 47.2760 64.1817 

        Lϖ    21.0030 30.8827 44.0043 

100 
0.5 24.4319 31.4703 40.6245 
1.0 29.9841 36.7995 46.8549 
1.5 26.9507 38.7423 64.7501 

         Lϖ  21.3947 31.4948 44.8648 

[±450]2 

0 
0.5 30.3743 41.4607 56.7525 
1.0 36.5799 49.1014 68.1200 
1.5 44.5544 61.2754 87.7403 

         Lϖ  26.8079 39.6505 56.3830 

100 
0.5 30.6196 41.8917 57.3967 
1.0 36.7799 49.4156 68.5605 
1.5 44.6830 61.4026 88.1625 

         Lϖ  27.0864 40.1023 57.0313 

[±450]s 

0 
0.5 31.1601 43.0576 60.3092 
1.0 39.0749 53.5663 75.9593 
1.5 37.8409 67.6010 97.8913 

         Lϖ  25.4835 37.4831 53.5773 

100 
0.5 31.3710 43.4380 60.8435 
1.0 39.2413 53.9219 76.3923 
1.5 38.0470 58.4842 98.2201 

         Lϖ  25.7359 37.9072 54.2003 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


