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1. INTRODUCTION 

 

The best way to obtain the desired surface 

properties for enhancing substrate usability is 

to coat the surface by using suitable coating 

material. In particular, atmospheric plasma 

spraying exhibits attracted considerable 

attention as a process for applying protective 

coatings. Atmospheric plasma spraying (APS) 

is a part of thermal spraying process, in which 

powdered materials of particle size distribution 

ranging usually from 40 to 100 µm are 

injected within the plasma or the plasma jet, 

where particles are accelerated and melted 

(molted) or partially melted (semi-molten) 

before they flatten and solidify onto the 

substrate [1–5], the coating being built by the 

layering of splats. For analysis of result for 

coating adhesion strength, there are three 

responsible fundamental mechanisms, which 

are related to the binding mechanical, 

chemical and physical forces [6].  

 

The coating adhesion strength depends on the 

characteristics of the substrate (topology, 

chemistry, etc.) and the impacting particle 

state (quantity, velocity, impact angle, 

viscosity, degree of melting, etc.). The particle 

state is related to particle injection (quantity of 

momentum, etc.) and to the plasma flow 

characteristics (mass enthalpy, velocity, 

coefficient of thermal transfer, etc.) [7, 8]. The 
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properties are hence directly or indirectly 

related to the operating parameters. These 

operating parameters and variables are 

intimately interrelated via complex nonlinear 

relationships (shown in Figure 1).  

 

For better coating adhesion strength, it is 

necessary to understand and control these 

interrelated relations. It is possible by using a 

robust quality control process. Among known 

approaches, statistical experiments are one of 

the best for empirically discovering cause-and-

effect relationships. For making the 

experiment more economical, these 

experiments also require the least number of 

trials; a well-planned set of experiments, in 

which all parameters of interest are varied over 

a specified range, is a much better approach to 

obtain systematic datum. Artificial neural 

networks can be used as a tool for processing a 

very large data related to a spraying process 

and to predict any desired coating 

characteristic, the simulation can be extended 

to a parameter space larger than the domain of 

experimentation [8, 9]. 
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Fig. 1: Interrelated Parameters and Variables Describing Plasma Spray Process. 
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2. EXPERIMENTAL PROCEDURE 

 

The powder mixture of fly-ash, quartz and 

illmenite was taken with their weight percent 

ratio of 60:20:20, and plasma sprayed on the 

mild steel and copper substrates. The size 

range of the powder mixture was 40 to 

100 µm. The powder mixture was 

mechanically milled in a planetary ball mill for 

3 h to get a homogeneous mixture. The 

substrates were having dimensions 1 in 

diameter and 3 mm thickness. The surface 

roughness of the substrate was increased up to 

~ 5.00 Ra by grit blasting at a pressure of 

3 kg/cm
2
 using alumina grit. Substrate surface 

was cleaned by acetone after grit blasting, then 

plasma spray process was carried out 

immediately. The coating process was made 

by using a 40 kW plasma spray system at the 

Laser & Plasma Technology Division, BARC, 

Mumbai. The plasma input power level was 

varied from 11 to 21 kW. The gas flow rate 

and arc current are controlled by plasma 

spraying gun accessories. This is a typically 

atmospheric plasma spray process, which is 

working in the non-transferred arc mode. A 

current-regulated DC power supply was used. 

The powder mixture was deposited 

perpendicularly with respect to the substrate. 

The major subsystems of the setup included 

the power supply, plasma spray torch, powder 

feeder, plasma gas supply, distance between 

torch and substrate, control console, cooling 

water and spray booth. Operating parameters 

used for coating deposition are given in Table 

I. Water cooling of the system was done by a 

four-stage closed-loop centrifugal pump at a 

pressure of 10 kg/cm
2
 supply. An important 

role for plasma spray coating is the adhesion 

strength of interface of the coating powder and 

the substrate. Interface bond strength is the 

main characteristic that proves the coating 

efficiency. The interface bond strength can be 

measured by coating pull-out test, which was 

carried out using the setup Instron 1195 at a 

crosshead speed of 1 mm/min. The test was 

performed as per ASTM-633 [10, 11]. 

 

Table I: Operating Parameters during Deposition of Fly-ash + Quartz + Illmenite Coatings. 

 Operating Parameters  Values 

Plasma arc current(amp) 

Arc voltage (volt) 

Torch input power (kW) 

Plasma gas (argon) flow rate (IPM) 

Secondary gas (N2) flow rate (IPM) 

Carrier gas (Ar) flow rate (IPM) 

Powder feed rate (gm/min) 

Powder size (µm) 

Torch to base distance (TBD)(mm) 

270–420 

40–50 

11,15,18,21 

28 

3 

12 

12–18 

40–100 

100–140 



 Journal of Materials and Metallurgical Engineering 

Volume 2, Issue 3, December 2012, Pages 1-10  

__________________________________________________________________________________________ 

 

ISSN:2231–3818© STM Journals 2012. All Rights Reserved 

Page 4 

3. ARTIFICIAL NEURAL NETWORK 

(ANN) 

 

An artificial neural network (NN) is a software 

[12], which copies the functional principle of 

the human brain. ANNs are a comparatively 

new modeling technique composed of simple 

elements operating in parallel. They can be 

used to solve problems that are difficult for 

conventional techniques or for human 

reasoning [13–16]. ANN calculation is also 

faster than that of finite element modeling or 

any other modeling [17, 18]. In ANN 

optimization process, the parameters are 

connected by weights which are the numbers, 

translating the strength of neuron connections. 

Input variables are taken as number fluxes 

which feed the network structure and are 

obtaining the output pattern. ANN is based on 

a training procedure to decrease the error 

between ANN response and experimental 

response for a given set of input variables. 

Such optimization considers neuron number 

and weight updates [8]. ANN bibliography is 

very rich with learning models, like the 

popular back propagation and the quick 

propagation, the Hebbian algorithm, the 

ADALINE model or the Kohonen learning 

rule and other models [19–24]. 
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Fig 2: The Three Layer Neural Network. 

 

4. RESULTS AND DISCUSSION 

 

For prediction of coating adhesion strength, a 

software NEURALNET was used, which is 

developed for neural computing by Rao and 

Rao [12]. Operation of database undergoes in 

three categories steps. The first is validation 

category, which is required to define the ANN 

architecture, understand the input-output 

correlations and adjust the number of neurons 

for each layer. The second is training category, 

which is exclusively used to adjust the 

network weights. And, the third is test 

category, which corresponds to the set that 
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validates the results of the training protocol. 

About 12 data sets (includes power level, i.e., 

voltage and current, torch to base distance, 

powder feed rate, powder size) are taken to 

train the neural network used for predicting 

adhesion strength. Varying numbers of 

neurons in the hidden layer are tested at 

constant cycles, learning rate, error tolerance, 

momentum parameter and noise factor and 

slope parameter. Based on least error criterion, 

one structure, shown in Table II, is selected for 

training of the input-output data. The learning 

rate is varied in the range of 0.002–0.100 

during the training of the input-output data. 

The network optimization process (training 

and testing) is conducted for 10,000,000 

cycles for which stabilization of the error is 

obtained. The number of cycles selected 

during training is high enough so that the 

ANN models could be rigorously trained. 

Neuron numbers in the hidden layer are varied 

and in the optimized structure of the network, 

this number is 8 (for mild steel) and 9 (for 

copper). The optimized three layer network is 

shown in Figure 2.  

 

Table II: Input Parameters Selected For Training. 

Input Parameters for Training Values 

Error tolerance  

Learning parameter (ß)  

Momentum parameter (α)  

Noise factor (NF)  

Maximum cycles for simulations   

Slope parameter (£)  

Number of hidden layer neuron   

Number of input layer neuron (I)  

Number of output layer neuron (O) 

0.0. 003 

0.0.002 

0.0.002 

0.0.001 

1 10,000,000 

0.    0.6 

1. 8       8       

      5 

      1 

  

4.1. Predicted Adhesion Strength Compared 

with Experimental Results Based on Different 

Feed Rate 

The prediction value of neural network was 

tested with 12 data sets from the original 

process data. Each data set contained inputs 

such as torch input current and an output 

value, i.e., adhesion strength was returned by 

the network. Figure 3 presents the comparison 

of predicted output values for coating adhesion 

strength with those obtained experimentally 

for both copper and mild steel substrates, 

which is done at a constant 12 gm/mm powder 

feed rate and 100 mm torch to base distance 

with change in power level. The predicted 

results show good agreement with 

experimental, which assure to find out the 

adhesion strength by taking different 

parameters for future work. Here, it is clearly 

observed that the predicted plot goes the same 
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way as that of the experimental, i.e., by 

increasing power level the adhesion strength 

increases up to a certain limit and no increase 

in adhesion strength with further increasing 

power level. Again for conformation by 

changing feed rate to 18 gm/min and torch to 

base distance 140 mm, the plot for both copper 

and mild steel changed (shown in Figure 4) 

with good agreement between predicted value 

and experimental value. 
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Fig 3: Comparative Plot of Experimental and 

ANN Predicted Values of Adhesion Strength of 

Fly-Ash + Quartz + Illmenite on Copper and 

Mild Steel Substrate (Plasma Spray at 

12 gm/min Feed Rate and 100 mm Torch to 

Base Distance). 

 

4.2. Comparison between Mild Steel and 

Copper Substrate in Account of ANN 

Predicted Adhesion Strength Results 

In Figure 5, it is clear that the adhesion 

strength increases with respect to power level 

from 10 to 18 kW and with further increase in 

power level there is no change in adhesion 

strength. It reveals that for 12 gm/min feed 

rate with 40 µm powder size and 100 mm 

torch to base distance, one should choose 

~ 18 kW power level for better spray coating. 

If greater than 18 kW power level is chosen, 

then there will be loss of process efficiency 

[25]. Surface morphology of powder mixture 

deposited on mild steel substrate at 18 kW and 

21 kW power level are observed in SEM (as 

shown in Figure 6 (a) and (b)) for examining 
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Fig. 4: Comparative Plot of Experimental and 

ANN Predicted Values of Adhesion Strength of 

Fly-Ash + Quartz + Illmenite on Copper and 

Mild Steel Substrate (Plasma Spray at 

18 gm/min Feed Rate and 140 mm Torch to 

Base Distance). 

 

the efficiency of the process. In Figure 6 (a), 

there are some open pores and in case of figure 

6 (b), there is a large number of pores 

observed in inter-splat layer which hinder the 

substrate-coating interface bonding. Here, it is 

confirmed that there is decrease in adhesion 

strength by increasing the power level to 
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21 kW. The reason is that due to higher 

thermal energy at 21 kW, there is more 

vaporization of coating powder, for which 

splats are connected before being deposited at 

the surface of the substrate and there are many 

cavities formed at the interlayer space. But it is 

found that the surface roughness at 21 kW is 

very less in comparison to 18 kW plasma 

spraying because molten particles are 

deposited at their vaporization condition. From 

the prediction plot in Figure 5, the adhesion 

strength of mild steel is always greater than 

that of copper. 
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Fig. 5: Predicted Adhesion Strength of Copper 

and Mild Steel Substrate with respect to 

Different Power Level (Plasma Spray of Fly-

Ash + Quartz + Illmenite at 12 gm/min Feed 

Rate and 40 µm Powder Size, 100 mm Torch 

to Base Distance).  

 

(a) 

 

(b) 

Fig. 6: Deposition of Fly-

Ash + Quartz + Illmenite Powder Mixture on 

Mild Steel Substrate for Observation of 

Process Efficiency by Using Different Power 

Level (a) 18 kW and (b) at 21 kW. 

 

4.3. Prediction Results Based on Powder 

Particle Size 

In case of copper, at 12 gm/min feed rate and 

100 mm torch to base distance, it is observed 

from Figure 6 that higher the powder size, 

lower is the adhesion strength and there is 

nearly uniform increase in adhesion strength 

for each plot. From ANN calculation by 

choosing this set of parameter with 40 µm 

powder size, the adhesion strength for copper 

substrate will be 5.48 MPa at 21 kW power 

level. But in case of mild steel as shown in 

Figure 7, at 12 gm/min feed rate and 100 mm 

torch to base distance, the increment value of 

adhesion strength is very low in between 10 

to13kW and then uniformly increases up to 

18 kW power level. Higher adhesion strength 

will be 9.00 MPa for mild steel with 40 µm 

powder size. From Figures 6 and 7 plots, it can 

be seen that the plasma spray will give better 

result at ~ 17 kW to 18 kW power level.  
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Fig. 6(c): Predicted Adhesion Strength Vs 

Power Level for Copper by Change in Size of 

Powder (Plasma Spray of Fly-

Ash + Quartz + Illmenite at 12 gm/min Feed 

Rate and 100 mm Torch to Base Distance).  
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Fig. 7: Predicted Adhesion Strength Vs Power 

Level for Mild Steel by Change in Size of 

Powder (Plasma Spray of Fly-

Ash + Quartz + Illmenite at 12 gm/min Feed 

Rate and Torch to Base Distance 100 mm). 

 

4.4. Prediction Results Based on Torch to 

Base Distance 

The adhesion strength decreases by increasing 

the torch to base distance, which is clearly 

observed in Figure 8. For smaller powder size 

(30 µm), the adhesion strength is better than 

that of higher powder size (70 µm, 90 µm and 

120 µm), at 18 kW power level and 12 gm/min 

feed rate. In case of copper, for 50 µm powder 

size the highest adhesion strength 5.56 MPa 

will be achieved at 50 mm torch to base 

distance. Figure 9 (for mild steel) gives the 

same idea for coating by different particle size 

with respect to torch to base distance. 
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Fig. 8: Predicted Adhesion Strength Vs Torch 

to Base Distance for Copper by Change in 

Size of Powder (Plasma Spray of Fly-

Ash + Quartz + Illmenite at 18 kW Power 

Level and 12 gm/min Feed Rate). 
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Fig. 9: Predicted Adhesion Strength Vs Torch 

to Base Distance for Mild Steel by Change in 

Size of Powder (Plasma Spray of Fly-

Ash + Quartz + Illmenite at 15 kW Power 

Level and 12 gm/min Feed Rate). 
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5. CONCLUSIONS 

 

For plasma spraying, adhesion strength can be 

economically increased by tracking a 

particular set of parameters which are obtained 

from higher predicted value in ANN. 

 

Artificial neural network system represents a 

demanding new generation of information 

processing networks. It is one of the most 

optimistic operations in plasma spray coating. 

 

ANN has a major advantage that it does not 

need additional information about possible 

correlations between the input and output data 

of process parameter to be processed by it 

since it determines these and finds 

correlations, which are too complex for 

humans.  

 

Due to these reasons, it can be concluded that 

neural networks have an enormous 

technological potential, not only regarding the 

plasma spraying process, but also regarding 

other fields of technology. 

 

REFERENCES 

 

1. Fauchais P. Journal of Physics D: Applied 

Physics. 2004. 37. 86–108p. 

DOI:10.1088/0022-3727/37/9/R02. 

2. Zhu D. et al. Advanced Ceramic Coatings 

and Materials for Extreme Environments: 

Ceramic Engineering and Science 

Proceedings. John Wiley & Sons. 2011. 

94–96p. 

3. Wei G. et al. Thermal Spray Conference. 

(ITSC 2004). Osaka, Japan. 2004. 10–12p. 

4. Lugscheider E. et al. IEEE Transactions 

on Plasma Science. 1990. 18(6). 968–

973p. 

5. Laha T. et al. Acta Materialia. 2007. 55. 

1059–1066p. 

doi:10.1016/j.actamat.2006.09.025 

6. Bergant Z. et al. Journal of Thermal Spray 

Technology. 2009. 18(3). 380–391p. 

7. Prystay M. et al. Journal of Thermal Spray 

Technology. 2001. 10. 67–75p.  

8. Kanta A. F. et al. JTTEE5. 2008. 17. 365–

376p. 

9. Mishra S. C. et al. Journal of Physics: 

Conference Series 208. 2010. 

doi:10.1088/1742-6596/208/1/012112 

10.  Davis J. R. Thermal Spray Society 

Training Committee. 2004. 52–53p. 

11.  Cheng K. et al. Thin Solid Films. 2009. 

517. 5361–5364p. 

12.  Rao V. et al. C++ Neural Networks and 

Fuzzy Systems. BPB Publications. 2000. 

13. Jean M. D. et al. Applied Surface Science. 

2005. 245. 290–303p. 

14. Wen Q. et al. Journal of American 

Ceramic Society. 2005. 88. 1765–1769p. 

15. Guessasma S. et al. Computational 

Materials Science. 2004. 29. 315–333p. 

16. Guessasma S. et al. Acta Materialia. 2004. 

52(17). 5157–5164p. 

17. etinel H. C. et al. Mechanics of Materials. 

2000. 32(6). 339–347p. 

18. etinel H. C. et al. Computers & Structures. 

2002. 80. 213–218p 

http://link.springer.com/search?facet-author=%22Z.+Bergant%22
http://link.springer.com/journal/11666
http://link.springer.com/journal/11666
http://link.springer.com/journal/11666/18/3/page/1
http://link.springer.com/journal/11666
http://link.springer.com/journal/11666


 Journal of Materials and Metallurgical Engineering 

Volume 2, Issue 3, December 2012, Pages 1-10  

__________________________________________________________________________________________ 

 

ISSN:2231–3818© STM Journals 2012. All Rights Reserved 

Page 10 

19. Guessasma S. et al. Computational 

Materials Science. 2004. 29. 315–333p. 

20. Werbos P. J. et al. Neural Networks. 1988. 

1. 339p. 

21. Kohonen T. Self-Organization and 

Associative Memory. New York, NY, 

USA. Springer-Verlag. 1984. 

22. Windrow B. et al. IRE Wescon Conv. Rec. 

Part 4. 1960. 96p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23. Hebbs D. O. The Organization of 

Behavior. New York, NY, USA, Wiley 

and Sons. 1949. 

24. Parker D. B. Andrew Seybold's Outlook 

On Professional Computing. 1988. 6(10).  

25. Innokent L. et al. Coated Metal: Structure 

and Properties of Metal-Coating 

Compositions. 2002. 165–168p. 


