Effect of 200 MeV Ag Swift Heavy Ions on Electrical Transport Property of Y_{1-x}Ca_xBa₂Cu₃O₇₋₅ Composite Thick Films

Collaborators A. Kujur¹, K. Ashokan²

D. Behera

Department of Physics, National Institute of Technology, Rourkela, ¹Department of Physics, National Institute of Technology, Rourkela, India ²Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi- 110 067

Experimental

Sample Preparation

Irradiation of Thick film by 200 MeV Ag ions of Fluence
> 5 x 10¹¹ ions/cm²
> 5 x 10¹² ions/cm²

Structural analysis (XRD)

➢ Peaks corresponds to YBCO phase corresponding to space group Pmmm orthorhombic.

>(00/) peak intensity falls as a function of ion fluence

Decreases the crystalline volume fraction effecting peak intensity to decrease

➢ Fall in intensity is due to defect production via secondary electrons creating point defects.

 \succ Elongation of *c* axis

Structural analysis (SEM)

Densely packed well distributed grains are observed in all the samples

Raman Analysis

~500 cm⁻¹ (stretching of apical oxygen ,

~ 440 cm⁻¹ (in phase vibration of O (2) -O (3) oxygen atom in CuO₂),

~337 cm⁻¹ (out-of-phase *c* axis vibration of O (2) -O (3) oxygen atom in CuO₂ plane).

The other two Raman active modes are vertical along the *c* axis given by Ba atoms (~116 cm ⁻¹) and Cu (2) atoms(~154 cm⁻¹)

600 cm⁻¹ is associated with defects and oxygen vacancies. oxygen suppression is occurring on the apical site.

Electrical transport property

Our results $\rightarrow T_c$ decreases

Point defects are created by SHI induced secondary electrons around the latent track

A finite tailing is observed in the derivative plot

Asymmetry of $d\rho/dT$ peak gives us valuable information about grain boundaries being damaged more than the grain itself

T_{cmf} decrease is accounted by vacancy created in CuO chains due to irradiation.

The onset of global superconductivity i.e. T_{c0} drastically reduces.

Excess conductivity

Conclusion

- Increment of residual resistivity
- Decrement of transition temperature
- > Significant broadening in transition
- > The dominance of 2D regime on irradiation
- The shifting of the apical oxygen O (4) atom towards the lower frequency side
- Oxygen loss confirmed by Raman
- > (001) Peak intensity decreases as a function of fluence

