
Effects of axial conduction in the fluid on 
cryogenic regenerator performance 

S. Sarangi and H.S. Baral 

Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, India 

Received 12 December 1986 

Although axial conduction in the matrix has been recognized as a major source of 
irreversibility in cryogenic regenerators, axial conduction in the fluid phase has largely been 
neglected. However, in spite of the negligible intrinsic thermal conductivity of most gases 
the effective conductivity of the gaseous medium in a porous bed may be quite significant, 
due to eddy diffusion and the consequent mixing of sections of gas at different temperatures. 
The governing equations of a thermal regenerator have been written in terms of the reduced 
length, A, reduced period, I-I, and an axial conduction parameter, 2, which depends only on 
the void fraction and the bed length to particle diameter ratio for a flow Reynolds number 
Re > 2. Numerical solutions, using the finite difference technique developed by Willmott 
and co-workers, have been obtained for several values of the three parameters. It has been 
established that axial conduction in the fluid phase is important, particularly when the design 
reduced length A > 1/2. 
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A regenerator essentially consists of a porous medium 
called the matrix, through which a hot and a cold fluid 
flow alternately. The exchange of energy between the two 
fluid streams takes place by heat transfer from the hot 
fluid to the matrix and subsequent transfer to the cold 
fluid. This is why regenerators are often called storage- 
type heat exchangers, in contrast with recupcrators or 
transfer-type heat exchangers. 

Regenerative heat exchangers have been used in hot-air 
engines, Cowper stoves in steel making, gas turbines and 
air separation systems. In recent years, they have been 
used extensively in small cryogenic refrigerators based on 
the Stirling, Gifford McMahon and similar cycles, in 
which they constitute the most important components. 
The classical design procedure for regenerators has been 
given by Hausenl. The effectiveness is expressed graphi- 
cally in terms of two dimensionless parameters, reduced 
tlength, A, and reduced period, I-i, defined as 

hAL 
A =  

GC~, 

and 

hA P 
n = . ( l )  

Pm C., 

where: 

h = heat transfer coefficient (W m--" K-  ~) 
A = heat transfer area per unit volume (m z m 
L = length of regenerator (m) 

-~) 

!' = time period for hot/cold blow (s) 
G = fluid mass velocity (kg m -2 s- t )  
p,, = density of the matrix (kg m-3) 
C,., Cp = specific heats of matrix and fluid respectively 

(J kg - t  K- t )  

Ideal  r e g e n e r a t o r  m o d e l  

Hausen's derivation of the governing equations is based 
on an idealized model of the regenerator first proposed by 
Schumann 2. This model is based on the following 
assumptions: 

I fluid flow through the regenerator is parallel and 
uniform throughout any cross-section; 

2 the thermal conductivity of the matrix is zero in the 
direction of fluid flow and infinite perpendicular to it. 
Therefore, the regenerator may be characterized by 
the temperature profile along the flow axis, the 
temperature being uniform over any cross-section; 

3 there is no conduction of heat through the fluid in the 
axial direction; 

4 the convective heat transfer coefficient is constant 
throughout the regenerator; 

5 the thermal properties of the fluid and the matrix 
materials are constant; 

6 fluid hold-up and pressure cycling have no effect on 
the performance of the regenerator; 

7 no phase change of the working fluid takes place 
within the regenerator; 

8 the boundaries are adiabatic and there is no heat 
exchange with the surroundings; 
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9 the regenerator is in balance operation, that is, 
Gh = Gc and Ph = Pc; and 

10 regular periodic conditions have been established for 
all matrix elements. 

In a real regenerator, however, some of these idealiz- 
ations are not strictly valid, particularly assumptions 2 
and 3 (above) regarding zero axial conduction through the 
matrix and the fluid. The significant effect of axial 
conduction in the matrix is particularly evident in the 
works of Bahnke and Howard 3. They have expressed the 
matrix axial conduction effects in terms of a non- 
dimensional parameter, Am = k.J(GCpL), and computed 
the performance of the regenerator in terms of A, I-I and 
2,,. The axial conduction effects have been found to be 
particularly dominant at higher values of A. 

Axial conduction in the fluid phase 

The effect of axial conduction in the working fluid, 
however, has largely been neglected in analytical studies 
in view of the small intrinsic (molecular) conductivity of 
most gases. However, when a gas flows through a packed 
bed there is eddy diffusion and consequent mixing of fluids 
in the axial direction. Just as molecular diffusion is related 
to molecular conductivity, eddy diffusion also causes an 
equivalent thermal conductivity in the axial direction. 
Since heat and mass transfer take place by the same 
mechanism, the mass diffusivity, D, and the thermal 
diffusivity, ~, = k/p('p, including both molecular and eddy 
components may be assumed to be the same quantity'*. 
Thus, the Lewis number, Le = ~/D, is assumed to be unity. 

The mechanism of eddy energy transport through 
packed beds has been extensively studied several years 
ago'*-6. One of the most significant works in this area is 
that by Edwards and Richardson 6. Based on extensive 
experimental results, they derived an empirical correl- 
ation between the longitudinal dispersion coefficient, D, 
and the Reynolds number, Re, as 

Pe = [(0.38/Re) + (0.5Re/(5.0 + Re))] - t (2) 

where the two dimensionless quantities, Re and Pe, are 
defined as 

Re = Gd~It 

and 

ee = Gdp/ripO = GdrJflp= = Gdp Cp/rik (3) 

where: 

dp = particle diameter (m) 
/l = viscosity (kg m-  i s-  t) 
ri = porosity (void fraction) of the matrix (dimension- 

less) 
k = equivalent thermal conductivity of the fluid (W m -  t 

K-t) 
p = average fluid density (kg m-3) 

A plot of In(Pe) versus In(Re) shows  6 a power law 
dependence for Re < 2 and a constant value of Pe(Pe ~ 2) 
for Re > 2. 

A dimensionless axial conduction parameter can be 

defined as 

,~__ k dp 

GCpL - Peril (4) 

When the flow Reynolds number is > 2, 2 may be written 
as 

2 dp (5) 
2riL 

Thus the axial conduction parameter. 2, depends only on 
the void fraction, ri, and the dimensionless quantity, L/d r, 
when. for the fluid, Re > 2. 

Example.  Consider a cryogenic regenerator, 30 mm in 
diameter and 300 mm long, filled with lead balls of I mm 
diameter with a helium flow rate of 0. I g s- t at an average 
temperature of 40 K and 10 atm* pressure. Using the 
Edwards and Richardson correlation 6, we can compute 
the effective thermal conductivity of the fluid phase. 
Taking the viscosity of helium at 40 K as 
5.5 x 10 -6 kg m - t  s - t  (reference 7)and the porosity of 
a randomly packed bed of spheres as 0.39 (reference 8) 
we get Re=Gdp// t=25.7.  Hence, P c = 2  and 2 =  
I/(2 x 0.39 x 300) = 0.0043. 

Mathemat ical  model 

The present regenerator model is the same as the Schu- 
mann model:, except that it excludes the assumption that 
there is no conduction of heat through the fluid in the 
axial direction i.e., in this Paper, the axial conduction in 
the fluid phase is considered to be finite. By considering 
energy conservation relations over a differential element 
of the regenerator, the dimensionless governing equations 
are derived as follows 

d0m 
o-S- = n (0 r  - 0 . )  (6) 

and 

@20 t 
_~oy, = A ( 0 .  - 0,) + ~ 

where 

(7) 

0 = ( r -  T= , ) / (K i  - T=,) 

y = y*/L 

t = t*/P 

(dimensionless temperature) 

(dimensionless axial distance) 

(dimensionless time co-ordinate) 

Tni and T~i are the inlet temperatures of the hot and cold 
fluids, respectively. During the hot and cold blow periods 
the associated boundary and periodicity conditions are, 
respectively, 

O,(y = O, t )= I 

and 

Or(y = I, t )= 0 

"1 atm = 101 kPa 
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and for 0~<y~< 1 

0re(y,  t Jr 2) = 0re(y,  t )  

N u m e r i c a l  s o l u t i o n  

N u m e r i c a l  s c h e m e  

Referring to the grid array shown in Figure 1 and 
following the method developed by Wiilmott '~'t°, Equa- 
tions 16) and 17) may be put in finite difference form 

O,.(i. j) = it..(/, j - I ) + 0.5HAt[0,.(i. j - I) + Or(i. j )  

- Or.(/. j - I )  - 0re(i. j ) ]  (8) 

and 

O,(i. j )  = O,.(i - I. j) + 0 .5AAy[0 . ( i  - I. j) + O.,(i. j )  

- O,(i - 1. j )  - Or(i. j ) ]  + 2Ay l i t , . ( / -  2. j) 

- 0,(i  - I. j )  - O,(i. j )  + O,(i + I . . / ) ]  (9) 

where i and j refer to the length and time co-ordinates, 
respectively, during the hot blow period. !!quations (8) 
and t9) may bc simplilicd to give 0,,(i, j) and 0r(i, j) 
explicitly in the Mlowing h~rm 

O,,,(i. j) = ( ' ,O , , , ( i . i  .- I) + ( ' 2 ( t , ( i . j  - I) + ( '3( t , ( i .  j )  (10) 

and 

(I,(i. j ) =  D~(/ . , ( i  -- l ,  j )  + l)z(I,,,(i, j )  + D.~(I,(i - 2, j )  

+ D.d)~(i - I , j )  + DsOt( i  + I . j )  (11) 

where 

( H A t ) / ( H A t )  
( ' l  = I -  2 / I +  . 

/ ( , , ; , )  IIAt I + 
( ' : = ( ' s =  2 / 

,/(, A,;:) 
D s = D~ = 2 2 + A y +  

" ~ t  1,2 Hot blow 

v 

2.1 

M'1.1 
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Grid array used in the numerical solution 

M~'I.N*I 

I,N÷I 

E f f e c t s  o f  a x i a l  c o n d u c t i o n . "  S. S a r a n g i  a n d  H .S .  B a r a l  

and 

( , D., = Av --" - + A v +  
" 2 

During the cold blow period, i andj  are replaced byfand y 
for length and time co-ordinates, respectively, f being 
counted from the cold end. 

The boundary and reversal conditions are now ex- 
pressed as follows. Boundary conditions: during the hot 
blow period 

0~ l , j )=  ! I<~j<~N+I 

and during the cold blow period 

0 d l , , q ) = l  I ~ < , q ~ N + l  

Reversal conditions: at the end of the hot blow period 

Ore(l: I ) = Om(M + 2 - J: N + I ) 

and at the end of the cold blow period 

0,,1i, I)=O.,(M + 2 - i ,  N +  I) 

Periodicity condition for all f 

Abs[[Om(/~ N + I)}c, - [Om([~ N + I)},~,-t, ] <~5 

where 6 is an error parameter and subscripts cy and 
Icy - I) refer to the present and previous cycles, respec- 
tively. While Equations (10) and (11) work well for 
intermediate values of i, they fail at the boundaries, in 
particular, it may be seen that Or(i-2, j) at i = 2 and 
0r(i + I, j) tit i = M + I arc undelincd. Therefore, special 
forms of Equation (I I) have to be used while computing 
0(2, jl and OdM + !, j). The finite difference form of 
{?'-Od?y 2) used to derive Equation (9) uses an average 
value of(?20d?y 2) between grid points (i,j) and (i - l,j). At 
the boundt|rics one of these terms becomes undefined. 
Therefore, assuming that (t?20d?y2) remains constant over 
at least one grid spacing, Ay, the following applies near the 
boundaries 

¢'~20f I 
-tqv ., = (Ai~:i ~- [0d I, j) - 20r(2, j) + 0,(3, j)] 

and 

?-'0f i 
-,-5 = ~ [Or(M - 1, j) - 20dM, j) + O,(M + I, j)] 
O'- t a y r  

for i = 2 and M + I, respectively. Thus,  for points (2, j) 
and (M + I, j), Equation (I I) reduces to the following 
special forms 

0r(2, j) = D~=0,.(I, j) + D2=0,.(2, j) + D,,.Of(I, j) 

+ Ds=0t(3, j) (! la) 

and 

Of(M + I,j)  = DtbO,n(M, j) + D2bOr.(M + 1,j) 

+ D3bOr(M - 1, j) + D4bOf(M , j) (I lb) 

C r y o g e n i c s  1 9 8 7  Vo l  2 7  S e p t e m b e r  5 0 7  
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where 

o,.-o,. A(Av)  z 

_ _  

o.. (, + Av / ( ^,Ay,' = . A y + ~  
t 

/( ') a(Ay): + 
D~, = 2  A y +  

D,b = Dzb = A(Ay)2 / ( A y -  2 + -=~=--)  " A(Av)Z'~ 

( )/( D4b = A y -  A(Ay)Z 22 A y -  2 + " 
2 

in the numerical solution process, Equations (! la) and 
(! lb) replace Equation (I i) while computing 0t(2, j) and 
Of(M + I, j), respectively. 

Solution procedure 

Starting with an arbitrary initial matrix temperature 
profile, Equations (10)and (I I)[or(I  la)for i = 2 and (1 lb) 
for i = M + I] are used to compute the matrix and the gas 
temperatures over the grid array shown in Figure !. The 
initial matrix temperature profile is estimated by the 
following procedure. An initial estimate of the overall 
efficiency of the regenerator is made using Tipler's 
formula t 

e-r = ~ t a n h  (12) 

The boundary temperatures at the start of the hot blow 
period are assumed to be 

0m( 1, I ) = 2~ T - 1 

and 

Om{M + l, i ) = 0  

A linear profile between these two boundary temperatures 
is assumed, thus 

O,.(i, I )=0m(l ,  1)+ [0m(M + I, I ) -0 , . (1 ,  I ) ] ( i - I ) / M  

=(2~T -- I X M  + i - i)/M (13} 

Starting with this initial tcmperature profile and the 
relevant boundary conditions, 0re(i, j) and 0r(i, j) are 
evaluated column by column. 

When using Equation (I I) for the evaluation of Of(i,.l~, 
Ot(i + I, j) is needed. Hence, a gas temperature profile is 
guessed initially for each column, these are then corrected 
by an itcrative procedure till all the O r values converge 
within 1 x 10 -s. When one column is complete, the 
solution proceeds to the next untilj = M + I. At this point 
the reversal conditions arc used to set the initial condition 
for the cold blow period. At the end of the cold blow 
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F igu re  2 Ineffectiveness shown as a function of reduced length, A. 
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period, reversal conditions are again used to provide the 
initial condition for thc hot blow period. 

The resulting matrix temperature profile is compared 
with thc corresponding profile at the beginning of the 
previous cycle. Cyclic equilibrium is achieved when the 
two matrix tempcrature profiles agree within an error of 
1.0 x 10 -+. Sometimes a large number of cycles are 
nccdcd before equilibrium is reached. In such cases, the 
acceleration scheme proposed by Willmott and Kulak- 
owski l~ has been used to reduce computer time. Six 
normal cycle calculations are performed betwccn two 
acceleration steps. This eliminates the perturbations 
caused by the accctcration process. 

Whcn convergence is finally achieved for the entire 
temperature profile, the average exit temperature of the 
fluid ovcr a half cycle is computed by the following 
form u la 

0, = / ;  0r(L, t) dt 
) 

Numcrically, 0~ is computed by integrating O+(M + 1, j) 
using Simpson's rule+ The elficicncy is related to thc 
average exit tcmpcratt, rc by 

,': = ( I -- 0r)ho t blo. = (0f)t+,'ld blow 

Results and discussion 

( 'omputcd incllicicncics ( I - + : )  have bccn plotted in 
I"i,~,ur,'s 2a to c against reduced length, A, for several 
values of reduced period, II(I1 = A/8, A;4 and A 2) anti 
axial conduction parameter, 2(2 = 0, 0.(X)I and 0.(X)5). l:or 
2 =0,  that is, in thc abscncc of axial conduction, the 
computcd values arc idcntical to those given by t lauscn ~. 
But for finite values of the axial conduction parameter, 2, 
the incfl`cctivcncss is significantly higher. When A > I/2, 
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the inefl`ccti~encss is mainly determined by the latter 
parameter and is fairly independent of regenerator size, 
denoted by reduced length A. 

Looking at the example discussed earlier, the axial 
conduction parameter was found to be 0.(X~3. Assuming 
A = 500 and H = A 8. which arc quite common in cryo- 
genic practice, from Figure 2a we find that the resulting 
ineffcctivcness is almost twice that occurring in the 
absence of axial conduction. Thus axial conduction in the 
fluid phase, caused mainly by eddy diffusion, plays a 
significant role in high A rcgcnerators and it should bc 
considcrcd along with effects such as axial conduction in 
the matrix, fluid hold-up and pressure cycling. 
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