

Abstract—Software effo rt estimation guides the bedding,

planning, development and maintenance process of software

product. Software development uses different paradigm like:

procedure oriented, object oriented, Agile, Incremental,

component based and web based etc. Different companies use

different techniques for their software project development.

The available estimation techniques are not suitable for all

types of software development techniques. So there is a need of

estimation technique that can be applied on all type of

software. This paper we are evaluating the application of

artificial neural networks in prediction of effort in conventional

and Object Oriented Software development approach. We have

used feed-forward neural network created using MATLAB10 (

NN tool kit) and applied on two different types of datasets, one

for conventional software and another for object oriented

software. The simulat ion results were studied and we found

that artificial neural network model works very accurately on

both types of software development techniques.

Keywords—Effort Estimation, Artificial Neural Network,

NNtool, MMRE, Class Points, Types of software.

I. INTRODUCTION

OFTWARE pro ject managers require reliable methods for

estimating software project costs, and it is especially

important at the early stage of software cycle. Because these

estimates are needed for budding and budgeting. Software

development involves a number of interrelated factors which

affect development effort and productivity. Accurate

forecasting has proved difficult since many of these

relationships are not well understood. Improving the

estimation techniques those are available to project managers

Manuscript received October 9, 2001. (Write the date on which you

submitted your paper for review.) This work was supported in part by the U.S.
Department of Commerce under Grant BS123456 (sponsor and financial

support acknowledgment goes here). Paper tit les should be written in
uppercase and lowercase letters, not all uppercase. Avoid writing long
formulas with subscripts in the tit le; short formulas that identify the elements
are fine (e.g., "Nd–Fe–B"). Do not write "(Invited)" in the tit le. Full names of

authors are preferred in the author field, but are not required. Put a space
between authors' initials.

Jagannath Singh is with the National Institute of Technology, Rourkela ,
Odisha, PIN-769008(Phone: 011-661-2462358; fax: 011-661-2462351;

e-mail: jagannath.singh@gmail.com).
Bibhudatta Sahoo is with National Institute of Technology, Rourkela,

Odisha, PIN-769008, INDIA. (e-mail: bdsahu@nitrkl.ac.in).

would facilitate more effective control of time and budgets in

software development.

 Software development technique keeps on changing. It was

started with conventional procedure oriented design, then

comes object oriented design, followed by component based,

web based, incremental and now-a-days agile technique is very

popular in the software development companies. There are

number of competing software cost estimat ion methods

available for software developers to predict effort required for

software development. Some techniques, including FPA,

COCOMO model and original regression model, are not

effective, because they are not suitable for all types of

software. The estimat ion models were designed keeping in

view only one type of software development methodology. So

the estimation model g iving excellent results may not be

suitable for other types of software. For example Function

Point Analysis (FPA), which was designed for conventional

software and gives good results for those, but it cannot be

applied to the object o riented software. Similarly Use Case

Points method was designed for object oriented software, may

not work effectively for other types of software.

 Due to the problem addressed above the software companies

are interested into those estimat ion techniques which are

suitable for all types of software and give more accurate

results. G.E. Wittig [5] had used artificial neural network for

estimation of the effort for conventional software and found

that it is giving good results. S.Kanmani, et al. [17] applied

artificial neural network fo r predicting the effort based on class

points for object oriented software. In this paper we will test

the applicability of ANN based estimat ion method on two

types of software, conventional and object oriented software

and we will check how it perform on two d ifferent kind of

datasets. So that we can say that the ANN based model may be

applied to any kind of software.

 In this paper we will first describe the meaning of effo rt

estimation and the different types of estimation techniques.

Then we will give reason for why to use artificial neural

networks for effort estimation. Next section will cover detail

study of artificial neural networks and their types. Our main

motive is to check whether art ificial neural networks based

prediction method is applicab le on different type of software

and how it performs on different software datasets. So we will

give brief definit ion of different types of software and

comparisons of their characteristics. Section 5 will cover the

review of related works those motivated us for our purposed

Application of Artificial Neural Network
for Procedure and Object Oriented Software

Effort Estimation

Jagannath Singh, and Bibhudatta Sahoo

S

work. In the last section we will g ive our simulation and

results.

II. SOFTWARE EFFORT ESTIMATION

 Software estimates are the basis for pro ject bidding,

budgeting and planning. These are crit ical practices in the

software industry, because poor budgeting and planning often

has dramatic consequences. When budgets and plans are too

pessimistic, business opportunities can be lost, while

over-optimis m may be followed by significant losses [1].

Software effort estimation is the process of predicting the

most realistic use of effort required to develop or maintain

software. Effort estimates are used to calculate effort in

work-months (WM) for the Software Development work

elements of the Work Breakdown Structure (W BS).

 Software estimation can be modeled as the three stages, 1
st

stage involves size estimation, 2
nd

 stage includes effort

estimation, and time estimation, followed by the 3
rd

 stage as

cost estimation, and staffing estimation. Figure 1 shows the

interaction between these modules in a typical software

estimation process in Software Development Life Cycle [10].

Fig. 1 Sequence of estimates in Software Development Life
Cycle

 According to the last research reported by the Brazilian

Ministry of Science and Technology-MCT, in 2001, only 29%

of the companies accomplished size estimation and 45.7%

accomplished software effort estimate [2], so effort estimation

has motivated considerable research in recent years.

Effort Estimation Techniques

Due course of time there are so many techniques evolved for

effort estimat ion. Basically those can be categorized into three

types-

1. Judgment Based Estimation

2. A lgorithm Based Estimat ion

3. Analogy Based Estimation

1. Judgment Based Estimat ion- This is the most traditional

and most popular estimation technique. In this all the

estimations are made by human beings and dependent upon

personal experience. It is of two types-

Expert Judgment: The mostly widely used cost estimation

technique. It is an inherently top-down estimation technique. It

relies on the experience, background, and business sense of one

or many key people in the organization. This technique is risky

because someone may overlook at some factors that make the

new projects significantly different. Also the experts making

estimate may not have the experience in similar projects.

Delphi Method: The technique is designed as a group

communicat ion process which aims to achieve a convergence

of opinion on a specific real-world issue. Here a group is made

out of most experience people in the organizat ion. It

overcomes the disadvantages of Expert Judgment.

2. Algorithm Based Estimation- As the new technologies

evolves and the software size became huge, the Judgment

based estimation fails to predict correctly. So need of some

formula based estimation techniques comes into picture. It is

also of two types.

COCOMO: The Constructive Cost Model (COCOMO) is an

algorithmic estimation model developed by Barry W. Boehm.

The most fundamental calculation in COCOMO is the use of

Effort equation to estimate the number of Person-Months

required to develop a project.

BsizeAEffort)(*

Where A is proportionality constant and B represents

economy. Values of A and B depends upon the type of

projects. A project can be classified into three types -Organic

projects those involve small teams with good experience,

Semi-detached projects those having medium teams with

mixed experience working and embedded projects which are

developed within a set of tight constraints.

TABLE I
VALUES OF ‘A’ AND ‘B’ IN COCOMO

Software Pro ject A B

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

Function Point Analysis (FPA): Function Point Analysis was

developed by Alan Albercht of IBM in 1979. Function point

metrics provide a standardized method for measuring the

various functions of a software application. Depending upon

this we can estimate our effort. Here all the functions are

categorized in five types. Those are, Internal Logical File

(ILF), External Interface File (EIF), External Input (EI),

External Output (EO), and External Inquiry (EQ). For each

category values assigned are low, medium or high. Besides the

above mentioned domain values, fourteen complexity factors

like Bach up and recovery, Data Communication etc. are g iven

certain values as per software requirement and final estimate is

calculated. Function Points are simple to understand, easy to

count, require little effort and practice. [18]

3. Analogy Based Estimation- Analogy-based estimation

has recently emerged as a promising approach, with

comparable accuracy to algorithmic methods in some studies,

and it is potentially easier to understand and apply. An estimate

of the effort to complete a new software project is made by

analogy with one or more previously completed projects. Ease

of use may be an important factor in the successful adoption of

Size

Estimation

Effort

Estimation

Ti me

Estimation

Cost

Estimation

Staffing

Estimation

estimation methods within industry, so analogy-based

estimation deserves further scrutiny. There are many

techniques those comes under analogy based estimat ion-

Case Base Reasoning: CBR is able to utilize the specific

knowledge of previously experienced, concrete problem

situations (cases). A new problem is solved by finding a similar

past case, and reusing it in the new problem situation. A second

important difference is that CBR also is an approach to

incremental, sustained learning, since a new experience is

retained each time a prob lem has been s olved, making it

immediately available for future problems.

Artificial Neural Networks: Artificial Neural Networks

(ANNs) is used in effort estimation due to its ability to learn

from previous data. It is also able to model complex

relationships between the dependent (effort) and independent

variables (cost drivers). In addition, it has the ability to

generalize from the training data set thus enabling it to produce

acceptable result for previously unseen data.

III. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Network (ANN) is a massively parallel

adaptive network of simple nonlinear computing element

called Neurons, which are intended to abstract and model some

of the functionality of the human nervous system in an attempt

to partially capture some of its computational strengths [3, 13,

and 14].

x1 bk

 Activation function

x2 Uk Output(Yk)

xm Aggregation Rule

 Fig. 2 Architecture of an artificial neuron

ANNs can be viewed as weighted directed graphs in which

artificial neurons are nodes and directed edges (with weights)

are connections between neuron outputs and neuron inputs.

In mathemat ical notation, any neuron-k can be represented as

follows:

j

m

j kjk XWU
1 and

)(kkk bUY

where x1 ,x2, …,xm are the input signals , wk1,wk2,….,wkm are

the synaptic weights of the corresponding neuron, uk is the

linear combiner output, bk is the bias, φ() is the activation

function and yk is the output signal of the neuron.

 After an ANN is created it must go through the process of

learning or t rain ing. The process of modifying the weights in

the connections between network layers with the objective of

achieving the expected output is called training a network.

There are two approaches for training– supervised and

unsupervised .In supervised training; both the inputs and the

outputs are provided. The network then processes the inputs,

compares its resulting outputs against the desired outputs and

error is calculated. In unsupervised train ing, the network is

provided with inputs but not with desired outputs. The system

itself must then decide what features it will use to group the

input data [3].

Artificial Neural Networks Architecture:

Depending upon the architecture the ANNs can be categorized

into following types, as shown below [19]:

(1)Feed-forward networks- A feed-forward ANN is the

architecture in which the network has no loops.

A feed-forward networks can again categorized into following-

(a) Single-layer perceptron- A single layer perceptron

consists of a single layer of output nodes, the inputs neurons

are connected directly to the outputs neurons via a series of

weights.

(b) Multilayer perceptron- In multi-layer perceptron an

additional layer of neurons present between input and output

layers. That layer is called hidden layer. Any number of

hidden layers can be added in an ANN depending upon the

problem domain and accuracy expected.

(c) Cascade network- Cascade network is a feed-forward

neural network where the first layer will get signal from input.

Each subsequent layer will receive signal from the input and all

previous layers.

(2) Elman Networks- It is a feed-forward network with partial

recurrence. Elman NN is a special type of recurrent neural

network where an additional set of “context units” is connected

with the input layer. These are also connected with the hidden

layer with connection weight one. The context unit works as

memory for the network.

(3)Recurrent/ Feed-back networks- In a recurrent (feed-back)

ANN is an architecture in which loops occurs in the network.

Recurrent networks can have following types -

(a) Competit ive networks- This neural networks is designed

based on Competitive learning. Th is rule is based on the idea

that only one neuron from a given iteration in a given layer will

fire at a t ime. Weights are adjusted such that only one neuron in

a layer, for instance the output layer, fire. Competitive learning

is useful for classification of input patterns into a discrete set of

output classes .

(b) Kohonen’s neural networks - The Kohonen’s neural

networks differ considerably from feed-forward neural

networks because it doesn’t have any activation function and

also it doesn’t have a bias weight. It uses unsupervised learning

for classification of input pattern presented to it.

(c) Hopfield networks- It is a fully recurrent network. The

network is based on Hebb’s Rule for learning. It can recall a

memory, if presented with a corrupt or incomplete version of

data.

(d) ART models- This neuron networks works according to

adaptive resonance theory (ART).The theory has led to neural

models for pattern recognition and unsupervised learning.

Wk2

Wkm

∑

Wk1

These models are capable of learn ing stable recognition

categories. ART networks are fu lly-connected networks, in

that all possible connections are made between all nodes.

IV. ANN IN EFFORT ESTIMATION

Artificial Neural Network is used in effort estimat ion due to

its ability to learn from previous data. It is also able to model

complex relationships between the dependent (effort) and

independent variables (cost drivers). In addition, it has the

ability to generalize from the train ing data set thus enabling it

to produce acceptable result for previously unseen data. Most

of the work in the application of neural network to effort

estimation made use of feed-forward multi-layer Perceptron,

Back-propagation algorithm and sigmoid function. However

many researchers refuse to use them because of their

shortcoming of being the “black boxes” that is, determining

why an ANN makes a particular decision is a difficult task. But

then also many different models of neural nets have been
proposed for solving many complex real life p roblems [4].

To use ANN for effort estimation we have to follow these

steps-

Steps in effort estimation

1. Data Collection: Collect data for prev iously

 developed projects like LOC, method used, and other

characteristics.

2. Division of dataset: Divide the number of data into

two parts – training set & validation set.

3. ANN Design: Design the neural network with

number of neurons in input layers same as the number of

characteristics of the project.

4. Training: Feed the training set first to train the neural

network.

5. Validation: After training is over then validate the

ANN by giv ing the validation set data.

6. Testing: Finally test the created ANN by feeding test

set data.

7. Error calculation: Check the performance of the

ANN. If satisfactory then stop, else again go to step

(3), make some changes to the network parameters

and proceed.

Once the ANN is ready we can g ive the parameter of any new

project, and it will output the estimated effo rt for that project.

V. TYPES OF SOFTWARE

Software types can be categorized into:

1. Conventional/Procedure Oriented Software: Here the total

project is d ivided into modules. All modules are developed

separately. Then they are integrated to build complete software

.Design & analysis documents are DFD and State-chart

diagram. Metrics used are LOC, FPs, and COCOMO cost

drivers.

2. Object Oriented Software: Pro ject is developed taking

OBJECT as main entity. OO features availab le, inheritance,

abstraction .It is a top-down approach. Design & analysis

documents are UML diagrams. Metrics used are no. of classes,

weighted method/class (WMC), UML points...

3. Agile Software: Iterative and incremental development.

Requirements and solutions evolve throughout the life cycle.

Very popular now-a-days. All design documents are written in

form of stories. Story points and sprints are used as metrics.

4. Component Based Software: In CBSD the total software is

developed in forms of components. “A component is a

coherent package of software that can be independently

developed and delivered as a unit, and that offers interfaces by

which it can be connected, unchanged, with other components

to compose a larger system.” Here the metrics used are

component intensity, concurrency, fragmentation, etc.

5. Web Based Software: A web application is

an application that is accessed over a network such as

the Internet or an intranet. The term may also mean a computer

software application that is coded in a browser-supported

language (such as JavaScript, combined with a

browser-rendered markup language like HTML) and reliant on

a common web browser to render the application executable.

TABLE II
KEY FEATURES OF DIFFERENT SOFTWARE

VI. RELATED WORKS

We have reviewed works based on use of artificial neural

networks in prediction of effort for Conventional Software and

then for Object Oriented Software. First we present the

conventional software development effort estimation, followed

by object oriented software.

A. Conventional Software Review

G. E. W ittig, et al. [5] used a dataset of 15 commercial

systems, and used feed-forward back-propagation multilayer

neural network for his experiment. He had tried for numbers of

hidden layers from 1-6, but found the best performance for

only one hidden layer. Sigmoid function was used. He found

that for smaller system the error was 1% and for larger systems

error was 14.2% of actual effort.

In a paper by Ali Idri, et al. [4] he has used COCOMO-81

dataset and three layered back-propagation ANN, applying 13

cost drivers as inputs. Development effort taken as output. By

Conventional Object
Oriented

Software

Agile
Software

Component
Based Software

Web Based
Software

-procedure

-record

-module

-procedure

call

-LOC

-FPs

-method

-object

-class

-message

-Use case
points

-CPs

-business
value
delivered

-story

points

-sprint

-Intensity

-Concurrency

-Fragmentation

-Component

 -Project
Experience

-http count
-page count

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Intranet
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Executable

taking 13 neurons in hidden layer and after 300,000 iterations

he found, average MRE is 1.50%.

F. Barcelos Tronto, et al. [2], also used COCOMO-81

dataset, but he has taken only one input, i.e TOTKDSI

(thousands of delivered source instructions). All the input data

were normalized to [0, 1] range. Here a feed-forward

multilayer back-propagation ANN was used with the 1-9-4-1

architecture. The performance in MMRE found was 420,

where as that of COCOMO and FPA was 610 and 103

respectively.

 Jaswinder Kaur, et al. [6] implemented a back-propagation

ANN of 2-2-1 architecture on NASA dataset consist of 18

projects. Input was KDLOC and development methodology

and effort was the output. He got result MMRE as 11.78.

Roheet Bhatnagar, et al. [7] used MATLAB NN toolbox for

effort predict ion. He had used a dataset proposed by

Lopez-Martin, which consists of 41 projects data. He has

designed a 3-3-1 neural network, applied the Dhama Coupling

(DC), McCabe Complexity (MC) and Lines of Code (LOC) as

inputs. Development time was the only one output. From the

experiment he found that the percentage of error during

training, validation and testing was between +14.05 to -25.60,

+12.76 to -18.89 and +13.66 to -15.75 respectively.

K.K. Aggarwal, et al. [8] had investigated for finding the

best training algorithm. Here ISBSG repository data was used

on a 4-15-1 feed-forward ANN. Four inputs were taken-FP, FP

standard, language and maximum team size. SLOC was the

only output. He had tried all t rain ing algorithm and concluded

that ‘trainbr’ is the best algorithm. ‘traingd’ was found to be the

next best algorithm.

TABLE III
RELATED WORKS

Author
Learning

Algorithm
Dataset

No. of

Projec

ts

No. of

Inputs

ANN

Configuration

G. E. Wittig[5]
Back-prop

agation

Commercial

Systems
15 - [23-4-1]

Ali Idri [4]
Back-prop

agation
COCOMO 63 13 [13-13-1]

I.F. Barcelos

Tronto [2]

Back-prop

agation
COCOMO 63 1 [1-9-4-1]

Jaswinder Kaur[6]
Back-prop

agation
NASA 18 2 [2-2-1]

Rpheet

Bhatnagar[7]

Back-prop

agation
Lopez-Martin 41 3 [3-3-1]

K.K. Aggarwal [8]
Back-prop

agation
ISBSG 88 4 [4-15-1]

B. Object- Oriented Software Review

Object oriented technology is becoming very popular

now-a-days, because of the features offered by it like

Encapsulation, Inheritance, Poly morphis m, etc. Modern

software development technologies such as .Net and Java are

rich of features hose are capable of developing highly

maintainable, reusable, testable and reliable software [19].

Simple FPA and COCOMO model will not work for

estimation of OO software.

Gennaro Costagliola, et al. [15] had proposed the concept of

Class Point. In this approach he had presented a FPA like

approach for OO software project. He had used two

measurements of size, CP1 & CP2. CP1 is for estimation at the

beginning stage of development and CP2 is for later refinement

when more informat ion is available. He had considered three

metrics No. of External Methods (NEM), No. of Service

Routines (NSR) and No. of Attributes (NOA) to find the

complexity of a class. Here he had proposed 18 system

characteristics to find Technical Complexity. From the

experiment over 40 pro ject dataset he found that the aggregated

MMRE of CP1 is 0.19 and CP2 is 0.18.

 Then Wei Zhou and Qiang Liu [16] in the year 2010 have

extended the above paper in two ways. First they have added a

size measurement named CP3 based on CPA. Second, in-order

to improve the precision of estimation, they have taken 24

system characteristics instead of 18 in the previous one. From

this they found that where the original CP1 gives MMRE 0.22,

this give 0.19 and incase of CP2 it was 0.18, now it is 0.14.

 S.Kanmani, et al. [17] has used the same CPA with a little

change, by using neural network in mapping the CP1 and CP2

into effort. In the base paper of Gennaro [15], he had used

regression method to find the values of the constants that can

be multiplied and added with computed CP1 and CP2 to find

the effort. Here in this paper Kanmani has used neural network

to find those values. The aggregate MMRE is improved from

0.19 to 0.1849 for CP1 and from 0.18 to 0.1673 for CP2.

VII. PERFORMANCE CRITERIA

 There are many performance criteria to evaluate the

accuracy of any estimat ion. The Mean Magnitude Relative

Error (MMRE) is a widely-accepted criterion in the literatures

which is based on MRE. Root Mean Square Error (RMSE) is

the next most popular evaluation criteria. In some of the papers

Pred () and BRE are also used for measuring the accuracy.

A. Mean Magnitude Relative Error (MMRE)

MMRE is frequently used to evaluate the performance of

any estimation technique. It measures the percentage of the

absolute values of the relative errors, averaged over the N

items in the "Test" set and can be written as [6]:

N

i iii yyy
N

MMRE
1

)ˆ(
1

where represents the i
th

 value of the actual effort and is

the estimated effort. The MRE calcu lates each project in a

dataset while the MMRE aggregates the mult iple projects . The

model with the lowest MMRE is considered the best.

B. Root Mean Square Error (RMSE)

RMSSE is another frequently used performance criteria

which measures the difference between values predicted by a

model or estimator and the values actually observed from the

thing being modeled or estimated. It is just the square root of

the mean square error, as shown in equation given below [6]:

2

1
)ˆ(

1
i

N

i i yy
N

RMSE

C. Balance Relative Error (BRE)

BRE is another evaluation criterion for accuracy [9]:

)ˆ,min(ˆ*100(%) iiii yyyyBRE

D. Pred(l)

 Another measure of Pred(l) was also adopted to evaluate

the performance of the established software effort

estimation models. It provides an indication of overall fit for a

set of data points, based on the MRE values for each data point

[19]:

Nkled)(Pr

where N is the total number of observations and k is the

number of observations with MRE less than or equal to l.

VIII. EXPERIMENTAL SETUP FOR ESTIMATION

Data Preparation

For simulation of conventional software projects we have

used a standard dataset proposed by Lopez-Mart in et.al. [7]. It

consists of 41 system development projects data, where the

Development Time (DT), Dharma Coupling (DC), McCabe

Complexity (MC) and the Lines of Code (LOC) metrices were

registered, as shown in table-IV. Since all the programs were

written in Pascal, the module categories mostly belong to

procedures and functions. The development time of each of the

forty-one modules were reg istered including five phases:

requirements understanding, algorithm design, coding,

compiling and testing

 In the next step we have experimented for effort estimation
of object-oriented software. Here we have used data from 40

Java systems developed during two successive semesters .

Detail data set is given in table-V.

ANN Preparation

In this experiment we have created one feed-forward neural

network using MATLAB10 NN toolkit [12]. For the neural

networks [3-5-1] architecture is used, i.e. 3 neurons in input

layer, 5 neurons in hidden layer and 1 neuron in output layer, in

table-VI. Train ing algorithm used is ‘trainlm’. For train ing the

dataset is divided into three divisions -for training 80%, for

validation 10% and fo r testing 10%. Learn ing rate is set at

0.01.Stopping criteria were set by number of epochs as 1000

and goal as 0.00.

The ANN shown in fig.3 is created by MATLAB tool, will

be applied to convention software dataset first and then the

same one will be applied on object oriented software dataset.

TABLE IV
NASA DATA SET

MC DC LOC DT

1 0.25 4 13

1 0.25 10 13

1 0.333 4 9

2 0.083 10 15

2 0.111 23 15

2 0.125 9 15

2 0.125 9 16

2 0.125 14 16

2 0.167 7 16

2 0.167 8 18

2 0.167 10 15

2 0.167 10 15

2 0.167 10 18

2 0.2 10 13

2 0.2 10 14

2 0.2 10 15

2 0.2 15 13

2 0.25 10 12

2 0.25 10 12

3 0.083 17 22

3 0.125 11 19

3 0.125 15 18

3 0.125 15 19

3 0.143 13 21

3 0.143 14 20

3 0.143 14 21

3 0.143 15 19

3 0.143 15 20

3 0.167 13 15

3 0.167 14 13

3 0.2 18 19

3 0.25 9 13

3 0.25 12 12

3 0.25 17 12

4 0.077 16 21

4 0.077 31 21

4 0.111 16 19

4 0.2 24 18

5 0.143 22 24

5 0.143 22 25

5 0.2 22 18

7

TABLE V

DATA SETS

TABLE VI
ANN SUMMARY

Fig. 3 The Feed-Forward ANN using MATLAB

IX. EXPERIMENTAL RESULTS

Conventional Software

 The feed-forward NN was trained for 10 iterations and

then the development time was predicted. We have

considered ten randomly chosen projects for performance

comparison.

TABLE VII
COMPARISON OF MULTIPLE REG. AND ANN

Project
No. Effort CP1 CP2 NEM NOA NSR

1 286 103.18 110.55 142 170 97

2 396 278.72 242.54 409 292 295

3 471 473.9 446.6 821 929 567

4 1016 851.44 760.96 975 755 723

5 1261 1263.12 1242.6 997 1145 764

6 261 196.68 180.84 225 400 181

7 993 718.8 645.6 589 402 944

8 552 213.3 208.56 262 260 167

9 998 1095 905 697 385 929

10 180 116.62 95.06 71 77 218

11 482 267.8 251.55 368 559 504

12 1083 687.57 766.29 789 682 362

13 205 59.64 64.61 79 98 41

14 851 697.48 620.1 542 508 392

15 840 864.27 743.49 701 770 635

16 1414 1386.32 1345.4 885 1087 701

17 279 132.54 74.26 97 65 387

18 621 550.55 418.66 382 293 654

19 601 539.35 474.95 387 484 845

20 680 489.06 438.9 347 304 870

21 366 287.97 262.74 343 299 264

22 947 663.6 627.6 944 637 421

23 485 397.1 358.6 409 451 269

24 812 676.28 590.42 531 520 401

25 685 386.31 428.18 387 812 279

26 638 268.45 280.84 373 788 278

27 18.3 2090.7 1719.25 724 1633 1167

28 369 114.4 104.5 192 177 126

29 439 162.87 156.64 169 181 128

30 491 258.72 246.96 323 285 195

31 484 289.68 241.4 363 444 398

32 481 480.25 413.1 431 389 362

33 861 778.75 738.7 692 858 653

34 417 263.72 234.08 345 389 245

35 268 217.36 198.36 218 448 187

36 470 295.26 263.07 250 332 512

37 436 117.48 126.38 135 193 121

38 428 146.97 148.35 227 212 147

39 436 169.74 200.1 213 318 183

40 356 112.53 110.67 154 147 83

Architecture

Layers 3

Input Neurons 3

Hidden Layer Neurons 5

Output Neurons 1

Training

Training Function Tansig

Algorithm Back Propagation

Training Function TrainLM

Parameters

Learing Rate 0.01

Epochs 1000

Error 0.00

Project

No.

Actual

DT

Multiple

Regression
MRE

Neural

Network
MRE

3 9 8.2 0.09 9.31 0.03

4 15 18.2 0.21 16.01 0.07

5 15 16.62 0.11 14.85 0.01

14 13 14.34 0.10 14.57 0.12

19 12 12.7 0.06 12.53 0.04

20 22 19.91 0.10 21.06 0.04

21 19 18.83 0.01 20.64 0.09

34 12 14.41 0.20 12.9 0.08

35 21 22.22 0.06 20.58 0.02

39 24 21.81 0.09 24.2 0.01

MMRE 0.10 0.05

8

Table-VII presents comparison of prediction using mult iple

regression and neural network and fig.4 shows the MRE

performance of both the techniques.

 Fig. 4 MRE of Multiple Regression & ANN

 Object-Oriented Software

After feeding data of 40 projects into the ANN and complet ing

the training, then the ANN is used for prediction of results. We

have partitioned the data into 4 sets taking 10 pro ject data in

each one. Then these data sets were given to the ANN for

calculating the efforts. The table-VIII & table-IX given below

compares the prediction of our ANN with those of CP1 and

CP2.
TABLE VIII

 COMPARISON OF CP1, CP2 & ANN

FIG. 5 MMRE OF CP1, CP2 & ANN

TABLE IX

 AGGREGATED MMRE OF CP1, CP2 & ANN

X. CONCLUSION

Estimation is one of the crucial tasks in software project

management. There are different estimation techniques are

present, but those are suitable for any one type of software

development. We want to verify the applicability of ANN

based estimation for software development effort, in all types

of software. In this paper we have tested with conventional and

object oriented software. We have observed that it gives good

results on both types of software in comparison to mult iple

regression and class points analysis.

In further extension of this paper, we will test estimation

with ANN design tool for effort estimation of Agile and

Web-based software.

REFERENCES

[1] Stein Grimstad, Magne Jorgensen, Kjetil

Molokken-Ostvold ,”Software effort estimat ion

terminology: The tower of Babel”, Elsevier, 2005.

[2] I.F. Barcelos Tronto, J.D. Simoes da Silva, N. Sant. Anna ,
“Comparison of Artificial Neural Network and Regression
Models in Software Effort Estimation”, INPE ePrint,
Vol.1, 2006.

[3] Simon Haykin, “Neural Networks: A Comprehensive
Foundation”, Second Edition, Prentice Hall, 1998.

[4] Ali Idri and Taghi M. Khoshgoftaar& Alain Abran,”Can
Neural Networks be easily Interpreted in Software Cost
Estimation”, IEEE Transaction, 2002, page:1162-1167.

[5] G.E. Wittig and G.R Finnic, “Using Artificial Neural
Networks and Function Points to estimate 4GL software
development effort”, AJIS,1994, page:87-94.

[6] Jaswinder Kaur, Satwinder Singh, Dr. Karanjeet Singh
Kahlon, PourushBassi,“Neural Network-A Novel
Technique for Software Effort Estimation”, International
Journal of Computer Theory and Engineering, Vo l. 2, No.
1 February, 2010, page:17-19.

[7] Roheet Bhatnagar, Vandana Bhattacharjee and Mrinal
Kanti Ghose, “Software Development Effort Estimat ion
–Neural Network Vs. Regression Modeling Approach”,
International Journal o f Engineering Science and
Technology,Vol. 2(7), 2010,page: 2950-2956.

[8] K.K. Aggarwal, Yogesh Singh, Pravin Chandra and
Manimala Puri, “Evaluation of various training algorithms
in a neural network model for software engineering
applications” , ACM SIGSOFT Software Engineering ,
July 2005, Volume 30 Number 4 , page: 1-4.

Actual

Effort CP1 MRE CP2 MRE ANN MRE

1 286 328.83 0.15 340.57 0.19 321.5 0.12

2 396 476.81 0.20 460.95 0.16 446.2 0.13

3 471 641.35 0.36 647.05 0.37 485.4 0.03

4 1016 959.62 0.06 933.75 0.08 1012.8 0.00

5 1261 1306.66 0.04 1373 0.09 1268.8 0.01

6 261 407.65 0.56 404.68 0.55 396.7 0.52

7 993 847.46 0.15 828.54 0.17 986.3 0.01

8 552 421.66 0.24 429.96 0.22 480.4 0.13

9 998 1164.94 0.17 1065.11 0.07 1016.5 0.02

10 180 340.16 0.89 326.45 0.81 163 0.09

MMRE 0.28 0.27 0.11

 Aggregate MMRE

CP1 0.192

CP2 0.165

ANN 0.097

9

[9] Mrinal Kanti Ghose, Roheet Bhatnagar and Vandana
Bhattacharjee , “Comparing Some Neural Network Models
for Software Development Effort Predict ion” , IEEE,
2011.

[10] Jagannath Singh and Bibhudatta Sahoo, ”Software Effort
Estimation with Different Artificial Neural
Network”, IJCA Special Issue on 2nd National
Conference- Computing, Communicat ion and Sensor
Network (CCSN) (4):13-17, 2011.

[11] Satish Kumar, “Neural Networks: A Classroom
Approach”, Tata McGraw-Hill, 2004.

[12] Howard Demuth and Mark Beale, “Neural Network
Toolbox-For use with MATLAB”,User’s
Guide,Version-4,Page-5.28.

[13] N.K.Bose and P.Liang, “Neural Network Fundamentals
with Graphs, Algorithms and Applications”, Tata McGraw
Hill Ed ition,1998.

[14] B. Yegnanarayana, “Artificial Neural Networks”, Prentice
Hall of India, 2003.

[15] Gennaro Costagliola and Genoveffa Tortora, “Class Point:
An Approach for the Size Estimat ion of Object-Oriented
Systems”, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 31, NO. 1, JANUARY 2005,page
52-74

[16] Wei Zhou and Qiang Liu,” Extended Class Point Approach
of Size Estimation for OO Product”, IEEE sponsred 2nd
International Conference on Computer Engineering and
Technology,2010,Vol-4 ,Page:117-122.

[17] S. Kanmani, J. Kathiravan, S. Senthil Kumar and M.
Shanmugam,” Neural Network Based Effort Estimat ion
using Class Points for OO Systems”,IEEE-International
Conference on Computing: Theory and
Application(ICCTA’07),2007.

[18] Magne Jørgensen and Torleif Halkjelsvik, “The Effects of
Request Formats on Judgment-based Effort Estimat ion”,
Journal of Systems and Software, vol. 83, 2010, pp.
29-36.

[19] Mehwish Nasir, “ A Survey of Software Estimat ion
Techniques and Project Planning Pract ices”, Seventh
ACIS International Conference on Software
Engineering,Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD’06), IEEE,2006.

Jagannath Singh is a M.Tech research scholar at
National Institute of Technology Rourkela India. He

had received B.E from Biji Pattnaik University of
Technology, Orissa. His research interest includes
Software Engineering, Artificial Neural Networks

and Microprocessor.

 Bibhudatta Sahoo received the M.Sc. Engineering

in Computer Science from National Institute of
Technology Rourkela, INDIA, in 1999. He is
currently an assistant professor in the Department

of Computer Sc. & Engineering, NIT Rourkela,
India. His interest include Parallel & Distributed
Systems, Networking, Computational Machines,
System Sof tware, High performance Computing,

VLSI algorithms He is a member of the IEEE
Computer Society & ACM.

