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Abstract— In this paper a new nonlinear adaptive controller 

using actor-critic based Reinforcement Learning (RL) is 

proposed to adapt the load pick-up and release operation while 

following a desired trajectory by the end effector for a Two-

Link Flexible Manipulator (TLFM). Simulation results show 

that the proposed RL based adaptive control gives better 

trajectory tracking performance and suppression of link 

vibration compared to conventional adaptive controllers with 

time varying payload. 

Index Terms— Flexible Manipulator, Reinforcement 

Learning adaptive control, Time varying payload. 

I. INTRODUCTION 

Ip-trajectory-tracking with variable payload in a flexible-

link manipulator is a complex task compared to its rigid 

counterpart because of its structural flexibility. 

Conventional control methods, e.g., state-feedback and 

proportional-derivative are generally used for such 

manipulators [1]-[3]. However, very often, the payload of a 

manipulator does not remain constant. Use of such fixed-

gain controllers provides poor performance because 

dynamics of manipulator with payload variation is not 

effected by the control gains. 

 To overcome the problem associated with fixed-gain 

controllers, one may employ adaptive controllers [4]-[7].  

Among the several different types of adaptive control 

schemes, the use of direct adaptive control is useful due to 

less computational burden involved into it. However, in case 

of nonlinear flexible manipulators, employing direct 

adaptive control has two steps: first, one requires linearizing 

the plant dynamics and then, secondly, implementing the 

controller based on the linear model [5]. Moreover, this 

approach heavily depends on finite-dimensional model of 

the actual infinite-dimensional flexible manipulator system. 

Therefore it would be expected that an adaptive controller is 

performing with under approximate models. The 

contribution of this paper is to solve the problem of direct 

adaptive control using actor-critic based RL for end point 

trajectory tracking for a TLFM robot under time varying 

payload with minimum computational effort. 

II. DYNAMIC MODEL OF TLFM 

A TLFM schematic along with the coordinate frames 

( , )X Y represent the rigid body moving frame and ( , )x y  

represent the shift in frame due to flexibility is shown in 

Fig.1. It is required that the joint angles 
1 2and  to follow 

certain desired angular positions even with variations in the 

payload while suppressing the vibrations in the links arising 

due to their flexibility in the links. 

 

Fig. 1.Schematic diagram of the TLFM 

The dynamic model for the above TLFM can be written 

using assume-mode method as follows [10]: 

( ) ( , )M q q C q q Kq     (1) 

where  1 2 11 12 21 22

T
q , , , , ,       are the generalized 

coordinate vector comprising of rigid joint angles, joint 

velocities and flexible deflection modes; M  is the inertia 

matrix; C  is the Coriolis and Centrifugal force vector; K  

is the stiffness matrix, and   is the control torque applied to 

TLFM. 
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III. NON-ADAPTIVE AND ADAPTIVE CONTROLLERS FOR TLFM 

A. Non Adaptive Case 

Structure of a non-adaptive feedback linearization based 

PID controller [11] to suppress the link deflection is shown 

in Fig.2. In this control strategy, a dynamic inversion torque 

is applied so that the outer-loop PID controller works on a 

composite linear model. The corresponding torque may be 

written as:  

( - ) ,M q u Nd    (2) 

where 
P I Du K e K edt K e  

 

and ,P I DK K and K are 

the control gains, the error e in tracking is a vector and is 

defined as
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and  

 

( , )N C q q Kq   
 

 

Fig. 2.Nonlinear Feedback Linearization Control 

 

B. Adaptive Case 

Since for time-varying tip mass case, the plant parameters of 

TLFM are unknown, one may resort to direct adaptive 

controller that estimates these parameters online. Such an 

adaptive control scheme is shown in Fig. 3. Let a  be a 

parameter vector, and â be its estimate, by substituting the 

estimated parameter and putting in (1), we get [5] 

 

 

Fig.3.Nonlinear Direct Adaptive Control 

ˆˆ ˆ ˆ( ) ( , )M q q C q q Kq     (4) 

The input adaptive toque is give as 

ˆ
DYa K s    (5) 

ˆa a a   is the parameter estimation error. Y is a matrix 

independent of dynamic parameter known as equivalent 

regressor matrix of the dynamics and consists of system 

states and errors.  

 ˆ Ta Y s   (6) 

and the filtered error is given as 

 s e e   (7) 

where Λ  ,  being constant positive definite matrices. 

IV. THE REINFORCEMENT LEARNING CONTROLLER  

A reinforcement learning method is applied to tune the 

gains online to give an optimal gain in order to adapt the 

payload changes on the tip. The Actor-critic base RL 

structure is shown in Fig.4 Applying (2) to (1), the error 

dynamics is obtained as  

0 0

0 0

e I ed

e e Idt

       
        

       
  (8) 

Involving the system model into (8), one obtains a nonlinear 

error dynamics 

( ) ( )x f x g x u    (9) 

with the state vector defined as 
e

x
e
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The RL based adaptive control is achieved using the policy 

iteration method applied to (9). Let the sate-feedback 

control which stabilize ( ( ), ( )f x g x ) be, 

( ) ( )t tu t h x Kx     (10) 

The quadratic cost function to be minimized is expressed as 

( ( )) ( ( ) ( ) ( ) ( ))T T

t

V x t x t Qx t u t Ru t dt


   (11) 

The cost function parameters Q and R are chosen as identity 

matrices. It may be noted that the cost function is 

continuous in time, considering the one step cost function 

the utility can be written as  

( ( ), ( )) ( ) ( ) ( )Tr x t u t Qx t u t Ru t   (12) 

Eq. (12) can be written below as one step cost function and 

the system output state cost [12]. 

( ( )) ( ( ), ( )) ( ( ))V x t r x t u t V x t     (13) 

 

Fig.4.Reinforcement Learning Adaptive Control 

with 0 1  a discount factor and (13) is a nonlinear 

Lyapunov equation known as Bellman equation. In this 

proposed RL based adaptive control the (13) will be solved 

using policy iteration using data measured along system 

trajectories without the knowledge of system matrix. 

Discretetising (13) one gets  

( ) ( )T T

k i i i i

i k

V x x Qx u Ru




    (14) 

Substituting LQR (Linear Quadratic Regulator) feedback 

gain in (17) the Bellman equation LQR becomes  

1 1k k k k k k k kx Px x Qx u Ru x Px     (15) 

1 1K k k k k k ke x Qx u Ru x Px     (16) 

where TP Q K RK   Equation (15) is linear in the 

unknown parameter matrix P .To further simplify Eq. (16) 

we use Kronecker product [9] may be used  to give the new 

LQR-TD (Temporal Difference) error. 

( )T

k k kx Px bx W x     (17) 

Substituting the above result to the Bellman TD equation we 

get 

1( , ) ( ) ( )T T

K k k k ke r x u W x W x      (18) 

 

Solving (18) using the policy iteration to minimize the TD 

error is the solution for online RL. 

The TD equation (18) can be written as, 

 

1

, 0;
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 (19) 

Fig. 5 shows the continuous time online policy iteration 

based RL. 

 

Step 1: Initialize. Stabilizing control policy
0 ( )K x t is 

selected. 

Step 2: Policy Evaluation. Weight were updated using 

gradient method, for policy evaluation 

1 1( ( ) ( ) ( , ( ))T

l k k k l kW x x r x u x     

Step 3: Policy Improvement. Determine a improved 

policy using for utility being (13),

1

1

( )
( ) ( )

2

T

l k l

x
u x R g x W

x






 



 

 

Fig.5. On-line Policy Iteration Algorithm [8] 

TABLE I PARAMETERS OF THE TLFM 
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where, 
( )x

x






 is the Jacobian of the activation function 

vector. For the Gradient decent tuning algorithm the policy 

improvement can be written as  

1

1 1 1( )(( ) ( ) ( , ( ))i i i T

l l l k l kW W k W k r x u x

       (20) 

 

V. RESULTS AND DISCUSSION  

Taking 0   a tuning parameter here (100), and the 

iteration of i incremented at each discrete events. The above 

RL method provides the solution of the optimal control 

using Policy Iteration by measuring data along the system 

trajectories. As soon as the parameter has converged, the 

loop to update the control policy again activates to 1l   and 

update the policy. This updating of the policy ends when the 

gain and as well as ARE solution matrix converge to 

optimal values. The above derived algorithm for RL based 

adaptive control is implemented online to the TLFM so as it  

track a desired tip trajectory while performing load pick-up 

and release operation using Actor Critic structure. The 

policy which is defined as (20) in Critic then the gradient 

method is used to update the policy matrix elements and 

then the control is updated in the Actor as 

 

1

1

( )
( ) ( )

2

T

l k l

x
u x R g x W

x






 



 
 (21) 

the,   is taken as 0.98.Then at each time k one measures 

the data set 
1( , , ( , ))k k k kx x r x u

which consist of current state, 

the next state and the utility (14) then one step of parameter 

update is performed and this is repeated till convergence to 

the optimal value, Simulation was done in 

Simulink©/Matlab© environment. The physical parameters 

of the TLFM are shown in Table-1.The desired tip trajectory 

is computed using inverse kinematics deduced in (22)-(25). 

1 2( ( ), ( ))dq t t     (22) 

where, 

1 2 2 1 2 2( ) tan( , ) tan( sin ( ), cos ( ))t a y x a a t a a t      (23) 

 

2

2 2 2( ) tan(cos , 1 cos )t a      (24) 

 

1 2 10sin(0.05 )d d t     (25) 

 

Figs. 5(a), 6(a) and 7(a) show the joint tracking error for 

TLFM on comparing we find that after the 10 sec learning 

time the tracking error is almost zero. Figs. 5(b), 6(b) and 

7(b) show the joint-1 tracking and Figs. 5(c), 6(c) and 7(c) 

show joint-2 tracking. Figs. 5(d), 6(d) and 7(d) show the tip 

deflections for adaptive, non-adaptive and reinforcement 

learning respectively. Figs. 5(e), 6(e) and 7(e) show  the 

link-1 mode deflection and Figs. 5(f), 6(f) and 7(f) show 

link-2 mode deflection and we see that the link deflection as 

discussed due to inner loop feedback linearization the 

dynamics cancel out leaving behind (8). Figs. 5(g), 6(g) and 

7(g) show the joint-1 torque and Figs. 5(h), 6(h) and 7(h) 

show joint-2 torque  From the results, it can easily be seen 

that the RL base control performance is better compared to 

adaptive and non-adaptive case in minimizing the tip 

trajectory tracking error as well as link vibrations. A step-

type time-varying tip mass as shown in Fig.8 is considered, 

which represents both the load pickup and release operation. 

The simulation was carried out for 50 sec. Table 2 shows 

the gains computed for all the above discussed controllers. 

TABLE I-TLFM Material Properties 

Link length L1, L2 0.3493m, 0.2975m 

Elasticity E1=E2 2.0684 1110 (Pa) 

Rotor moment of Inertia Ks1, 

Ks2 
6.28 610 , 1.03 610 (kg. 2m ) 

Drive moment of Inertia J11, 
J21 

7.361 410 , 444.55 610  (kg.
2m ) 

Link moment of Inertia J12, 

J22 
0.17043, 0.0064387(kg. 2m ) 

Gear ratio N1, N2 100, 50 

Maximum Rotation R1, R2 +/-90, +/-90 

Drive Torque constant Kt1, 

Kt2 
0.119; 0.0234(N. Am / ) 

TABLE I PARAMETERS OF THE TLFM 
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Fig.5. Feedback Linearization control

Fig.6. Nonlinear adaptive control
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Fig.7. Reinforcement learning based adaptive control 

 

Fig.8.Time varying Payload 

 

TABLE II-TLFM Control Parameters [11] 

Controllers Joint-1 gains Joint-2 gains 

Feedback 

Linearization(Comput

ed Torque Control) 

P P1

D D1

K K

K K





 

=100(approx) 

P P 2

D D 2

K K

K K





 

=100(approx) 

Linear Parametric 

Adaptive Controller 
P P1

D D1

K K

K K





 

=50(approx) 

P P 2

D D 2

K K

K K





 

=50(approx) 

Reinforcement 

Learning based 

Adaptive controller 

1

P1

1

D1 p1

K QR

K 2K QR

ˆ

ˆ







 

 

=4.5 

1

P 2

1

D 2 p 2

K QR

K 2K QR

ˆ

ˆ







 

 

=5.5 

 

VI. CONCLUSION 

In this paper, it is shown that, in presence of time-varying 

tip-mass as external disturbance, reinforced learning based 

adaptive controller has improved performance over two other 

non-adaptive and adaptive controllers for TLFM. What make 

this control more efficient than that of compared methods is 

that it also suppresses the link as well as tip deflection. 

Moreover, the controller adapts the feedback gains by not 

involving the manipulator dynamics hence reducing the 

computational difficulty and error due to modeling 

approximation. Such a performance is desirable in case of 

industrial task to get high-speed operation using light weight 

manipulators with accurate tip trajectory tracking under 

external disturbance. 
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