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This Paper presents Second Law of Thermodynamics analysis techniques for sensible 
refrigeration energy storage units with non-adiabatic boundaries. The investigation is based 
on the minimization of entropy production due to a finite temperature difference. The results 
of this study indicate three basic points: 1, in the presence of heat leaks, the irreversibility 
rate is more than in its absence; 2, the increase in irreversibility due to heat leaks reduces 
the effective Ntu exponentially; 3, there exists a dimensionless optimum time parameter 
which relates two other fundamental dimensionless parameters for the maximization of useful 
work stored. These fundamental parameters are Ntu associated with heat f low across the 
non-adiabatic wall and Ntu of the storage unit. These points suggest that the leakage heat 
affects the-entropy production adversely and hence it should be kept at a minimum. 
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N o m e n c l a t u r e  

A Heat transfer area per unit length (m 2 m-  ~) 
C Specific heat of matrix (kcal kg-  ~ K -  ~) 
C~ Specific heat of gas (kcal kg-1 K-l) 
Ex Exergy content of gas (kcal) 
I Irreversibility (kcal) 
i Irreversibility rate (kcal s -  t) 
Ix Specific irreversibility = I/E, 
L Length of bed (m) 
M Mass of matrix bed (kg) 
rh Mass flow rate of gas (kg s - t )  
Nt= Number  of transfer units = UAL/rhCp 
Q Heat transfer rate (kcal s-1) 
S Entropy (kcal K - ~) 
,9 Entropy rate (kcal s-~ K - t )  
s Specific entropy (kcal kg-  1 K -  =) 
T Temperature (K) 
To Ambient temperature (K) 
t Time co-ordinate (s) 
U Overall heat transfer coefficient (kcal m - 2 s -  ~ K - ~) 
x Distance co-ordinate (m) 
xa Dimensionless distance = x/L 
y 1 -- e x p ( -  Nt.,l) 

Greek letters 

y + Nt.,. 
q aO 
~' ( l + N,...)O 
0 thCpt/MC 

~' 3/(1 + N,,..) 
z Dimensionless temperature = ( T o -  Tg, i)/To 

Ratio of optimum storage capacity to 
maximum storage of useful work 

Subscripts 

cv Control volume 
g Gas 
fen Generation 
i Inlet 
m Matrix 
o Outlet 
opt Opt imum 
sur Surroundings 
w Wall or boundary 

The design of an economically attractive industrial or 
commercial system requires that all possible sources of 
energy, including the waste heat, be efficiently utilized to 
satisfy the energy demand of the system. For smooth 
functioning of a system, the supply and demand of energy 
should be synchronized. When the energy available for 
the system is more than needed or the energy produced 
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by the system is more than the demand, then the need 
for storage arises. Thus, the main objective of the storage 
unit is to utilize the surplus energy to balance the supply- 
demand requirements. 

Of  the many possible ways of storing energy for later 
use, sensible energy storage systems are attractive for their 
relative low cost, compactness and simplicity. In many 
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cryogenic and refrigeration storage systems, metallic 
porous beds of high specific heat are utilized for efficient 
and economic energy storage. 

The traditional methods for analysis and design of 
sensible heat storage systems using the First Law of 
Thermodynamics, are described extensively in the 
excellent books by Hausen t and Schmidt and Wiilmott 2. 
Using the First Law of Thermodynamics, the storage 
systems are assessed in terms of how much thermal or 
refrigeration energy the unit is able to store rather than 
how much useful thermal or refrigeration energy is wasted 
during the storing process. In brief, this indicates that 
one system is more effective than another if, for the same 
thermal or refrigeration energy input to the system and 
for the same thermal capacity of storage material, it is 
capable of storing more energy. Thus, this approach yields 
the substantive design of storage units but not necessarily 
the thermodynamic optimum design. This led Bejan 3 to 
analyse the performance of sensible heat storage units on 
the principle of thermodynamic availability. 

In most convective heat transfer processes, the 
thermodynamic unavailable energy (or 'anergy') is 
characterized by two factors, that is, fluid friction and 
heat transfer across a finite temperature difference. These 
two interrelated phenomena are the manifestations of 
thermodynamic irreverffibility and the investigation of a 
process from this single standpoint is based on the Second 
Law of Thermodynamics in addition to the First Law. 
This analysis has led to the maximum storage of useful 
work by keeping the entropy generated to the minimum. 
Many authors 3-6 have investigated fluid flow and heat 
transfer by considering the minimum entropy generated 
to yield optimum design parameters. In their pioneering 
studies, Bejan 3 and Krane 6 applied the entropy 
generation techniques for the analysis of sensible heat 
storage systems. In both these analyses, the authors 
considered that the storage units have perfectly adiabatic 
boundaries. In practice, however, there is always some 
heat transfer between the storage unit and environment. 
In cryogenic or refrigeration storage units," the cost of 
this penalty is too large. Thus, the purpose of this Paper 
is to investigate the refrigeration storage units with heat 
leak from the surroundings and to develop optimum 
design parameters for minimum entropy generation due 
to heat transfer across a finite temperature difference 
including the leakage heat. 

Transient response of refrigeration storage 
unit 

A typical operation of a refrigeration storage system 
is shown schematically in Figure 1. The system consists 
of a matrix bed of large thermal conductivity having mass 
M and specific heat C. The stream of cold gas from one 
side of the bed is heated by the cooling of the matrix 
(initially at ambient temperature); also the matrix is 
heated by the leakage heat from the ambient through the 
lateral boundary wall. The gas is finally discharged into 
the environment. Gradually, the matrix temperature and 
the exhaust gas temperature decrease, approaching the 
cold gas inlet temperature. Since, the matrix thermal 
conductivity is large, matrix and gas outlet temperatures 
are functions of time only. 

From the First Law of Thermodynamics, the energy 
conservation equations for gas and matrix may be 

Environment 

T # H e a t  leak 

Iiiii!i!!i!ii ...... I : 

~ t L f 
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Environment 

Figure 1 Schematic diagram of gas-matrix system for sensible 
refrigeration energy storage 

expressed as 

aT,(x, t) (UA), 
c~x = rhC, [TIn(O- Tg(x, O] 

and 

(l) 

dTm(t) = mCp [T,(x = 0, t) - Tm(x = L, t)] 
dt MC 

(ua).  
[T O - T.(t)] 

The dimensionless parameters can be defined as 

(2) 

X 
X D ~- '~ 

0 = thCr't 
M C  

(UA)=L 
Nt='= = /hCp 

and 

(UA) .L  
Nt=,,,, = rhCt ' 

where: U is the overall heat transfer coefficient; A is the 
heat transfer area per unit length of the matrix; L is the 
total length of the matrix bed; and w and g are the suffixes 
for wall and gas, respectively. 

With the above dimensionless parameters, the 
differential equations, Equations(l) and (2), along with 
the boundary conditions can be written as 

~T,(xo, 0) 
OxD = Nt,.a[T,,(O) - Tl(x o, 0)3 (3) 

dTm(O) 
dO = Nt"'wFT° - T,.(0)] 

+ r T , ( x D  = o, 0) - T,(xD = 1, 0 ) ]  (4) 
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The boundary conditions are 

 (xo = o, o ) =  | 

 ,(xD = l, o)= T,.o(0) / (5) 
Tm(XD, 0 = 0 )  = To 

The solutions of Equations (3) and (4) with the boundary 
conditions of Equation (5) are given by 

To- T.(O) = y (1 -exp(-~O))  (6) 
To-T, .  , a 

and 

T ° -  Ts'°(0) 1+ y[Y (1 - exp ( - -~0 ) ) -11  (7) 
T O -- T~.~ = ~- 

where 

y = 1 - exp(-  Nt,.,) 

and 

= y + N t . , w  

Equations (6) and (7) represent the transient response of 
the storage system for matrix and gas temperatures, 
respectively. 

Exergy analysis 
General equation for irreversibility 

The irreversibility or the amount of useful work dissipated 
is quantified in terms of entropy generated. Invoking the 
Gouy-Stodala theorem 7, this relation states that 
irreversibility (or availability destroyed) is equal to the 
entropy generation times the environment absolute 
temperature. The rate of irreversibility can be expressed 
in terms of entropy generation rate as 

I-dS=, dS. , ' ]  
ToSs.°= Tot-a;- +-a;-j (8) 

The expression for irreversibility rate in a steady-state 
and steady-flow process a with a single stream can be 
written as 

r s°. 
i = T o 1 - ~  + th(So - To _l (9) 

where: S=, is the entropy generated in the control volume; 
rh is the mass flow rate; so and s~ are the output and 
input entropies associated with the flow, respectively; and 
Q,, is the rate ofleakage heat entering the control volume. 
Equation (9) is the governing equation for the 
irreversibility and it is used later for exergy analysis of 
the refrigeration storage process. 

Exergy destruction in the storage process 

The refrigeration storage process, as shown schematically 
in Figure 2, is associated with three irreversibilities due 
to the heat transfer across a finite temperature difference: 
1, heat transfer between the cold gas Stream and matrix; 
2, cold gas stream exhausted from the matrix is heated 
due to irreversible mixing with ambient air; 3, heat leak 
from surroundings. The other irreversibility source, 
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Inner Outer 
i l '~--~rreversibi l i ty -[--I _ irreversibi l i ty ,~ 
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I . . . . . . . . .  J 

Heat Heat 

F i g u r e  2 Sources of  i rreversibi l i ty in refr igerat ion energy storage 
process 

neglected in the present analysis, is due to fluid friction. 
The total irreversibility rate for the system shown in Figure 
2 is 

7;, d Tm . To "I= o[~t (MCIn --~oo) + mCpln T~., 

Since 

I = I dt = I dO 

irreversibility I can thus be estimated by the integration 
of Equation (10) with the use of the temperature profile 
equations, Equations (6) and (7). The resultant equation is 

I = MCOTo -~ In 1 - - - ( 1 - e x N - e 0 ) ) e  

+yz¢ ( 1 - e x p ( - a 0 ) ) } - { I n ( ! - z ) + z } l  (11) 

where z is a dimensionless temperature variable expressed 
a s  

TO-- Tg,i 

To 
Equation (11) expresses the exergy destroyed during the 
refrigeration storage process. 

The total ¢xergy content of the cold gas drawn from 
the low temperature source can be evaluated by 
considering the minimum work required for a Carnot 
refrigerator to cool the gas at temperature T O to 7=, = by 
rejecting heat to the environment at temperature T o . The 
exergy required in this process is given by 

E, = -MCOTo[r + ln(l - z)] (12) 

A more instructive expression can be obtained by 
considering the ratio of exergy destroyed to the total 
exergy content of the cold gas. The resultant dimensionless 
exergy is designated as specific irreversibility, I,. This 
quantity is the same as the 'number ofirreversibility units' 
introduced by Bejan 7. From Equations (! I) and (|2), the 
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specific irreversibility is given as 
I 

1~ E~ 

[ ]" In 1 - ~ -  (! - e x p ( - e O ) )  +-~- (1 - e x p ( - e O ) )  

=1  
0['t + ln(l - t)] 

(13) 

The above equation can also be represented as 

ln[l - ~(1 - e x p ( -  r/))] + ~(1 - exp( - r/)) 
1, = I - O[r + ln(l - ~)] (14) 

and 

&/op, eXp(- r/op,) 
+ In[l - ~(I - e x p ( -  r/op,))] 

1 - ~( I  - e x p ( -  Top,)) 

- ~r/optexp(- ~/op,) + ~(1 - e x p ( -  ~/op,)) = 0 for 

where 

0~ 

and 

r] = cz0 

For a = y, that is, for no heat ieakt'rom the surroundings, 
Equation (13) or (14) is the same as that derived by Bejan 3. 

Equation (13), or (14), above is defined for finite values 
of ~ and y. However, depending on the limiting values of 
these variables the equation can be modified as follows 

Case I: ~ ~ 0 

I, = 1 -- ~ (1 -- exp(-- ~0)) for 0 ~< y < 1 (15) 

and 

l I! - {exp-(l + N,,,..)0}] 
l, = 1 1 ¥ j 

for y ~ l  (i.e. N t , . , ~ )  (16) 

Case II: z :/:0, y ~ l  (i.e. Nt,.s-~ oo) 

ln['l -- ~'(1 -- exp(-- T/'))] + ~'(1 -- exp(-- ~/')) 
I,  = 1 0[~ + In(1 - ~)] (17) 

where 

T 

1 + N t . , .  

and 

r/' = (1 + Nt...)O 

O p t i m u m  p a r a m e t e r  

The amount of cold gas used or the time parameter, ~0 
(that is, r/), plays a major role in determining the loss of 
useful work due to heat transfer across a finite temperature 
difference. Examination of Equation (13) or (14) shows 
that the specific irreversibility is unity in the 0--*0 (or 
= 0 ~ 0 )  limit and 0--*oo (or ~0--*oo) limit. Hence, it is 
clear that there exists an optimum time, 0opt (or a(0)opt ), 
when the specific irreversibility i'eaches its minimum. The 
locus of optimum charging parameter, r/op t (or ¢(0)op=), can 
be estimated explicitly by minimizing the specific 
irreversibility equation, Equation (14). Basically, two 
types of limiting cases arise for this minimization 

[exp( - r/op,)](l + 2~op, ) - 1 = 0 for ~ ~ 0 (18) 

~ 0  
(19) 

The optimum charging parameter, r/op t , expressed by 
Equations (18) and (19) can be calculated numerically by 
Mueller's Iteration method of successive bisections and 
inverse parabolic interpolation 9" 

Optimum storage capacity 

The temperature of the matrix at the end of the cooling 
process, by the cold gas, for the optimum charging time, 
0op,, can be estimated from Equation (6). The optimum 
matrix temperature, Tm,op,, corresponds to the maximum 
exergy storage. However, if the matrix is allowed to cool 
to its ceiling temperature, Ts.j, maximum exergy is stored 
in the matrix at the expense of more exergy waste from 
the cold gas. Thus, the fraction q~ which determines the 
optimum refrigeration storage corresponding to maxi- 
mum storage of useful work may be given as 

= To - Tin..p, (20) 
T O - -  Ti, i 

Effective gas side Ntu 

The heat leak to a refrigeration storage unit increases the 
irreversibility in the storing process. This dissipated useful 
work reduces the effective Nt=.=. This reduction in Nt=., 
is dependent on the rise of N,=.,, for the same =/y value. 
From above we obtain 

N t u  w a y + N , . . .  1 +  
-y y 1 :- e x p ( -  N,,.g) 

Differentiating this equation for a constant a/y value and 
putting it in the finite difference form yields 

ANt.., = [exp(N,=,=)- 1] ANt.,. (21) 
NtU,W 

Equation (21) indicates that for a given change in Nt,.,, 
per unit Nt,.,,, the effe:tive Art= reduction (i.e. ANt,.~) can 
be estimated. In practice, Nt.  = >> 1, which suggests that 
exp(Nt,.g)- I ~ exp(Ntu,f ). That is, the result indicates 
that a small rise in Nt=.,, results in an exponential reduction 
in Nt,.=. 

R e s u l t s  

The graphical representation of Equation (13) with its 
limiting cases described by Equations (15)--(17) is obtained 
as shown in Figures 3-8. At the outset of the exergy 
storing process (0 ~ 0), the bed temperature is at the initial 
ambient temperature, To. This results in zero exergy 
recovery; this leads to the destruction of the entire exergy 
content of the cold stream, At the other extreme of the 
charging time (0--, oo), the matrix remains in equilibrium 
with the cold stream temperature. The cold stream exits 
from the bed as cold as it enters; thus, its ¢xergy content 
is again destroyed by the ambient temperature. The above 
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decreases (i.e., low heat transfer), and ~ increases (i.e., 
more temperature difference). However, a limiting case 
for the specific irreversibility, I,, exists as shown in 
Figure 4 when ~t/y-* 1, Nt..~ --, oo, and • ~ 0. 

Figure 9 obtained from Equations (18) and (19) depicts 
the locus of specific irreversibility minima which are 
described by the earlier Figures 3-8. This figure 
demonstrates that if a system operates on minimum 

1.1J 
© 0 7 1.2 J 

' 1.3 J 
~'~ 1.4 J 1.0 ~ 1.5 

~1= / ~ ~ i i  ~ 1 " 4  

06  1.5= I ~ I , I = I , -.= 1.3 
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Figure 3 Fraction of exergy destroyed by heat transfer across a "~ 0.8 ~ _ . ~ / / ~ ~ . . ~ - ~ - j . s . . ~ f ~ . , ~  - 
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Figure 4 Fraction of exergy destroyed by heat transfer across a ~ 0.8~- ~ ~  
finite temperature difference for "c --. 0. - - - ,  N t u g = 2 ; -  ~ I i i ~ ~  I l 
Ntu g--~ oo. Numbers given are for the ratio =/y "~ 0.7 
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Figure 7 Fraction of exergy destroyed by heat transfer across a 
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Figure 5 Fraction of energy destroyed by heat transfer across a 
finite temperature difference for ¢ = 0.1. - - - ,  Nt,.¢ = 0.5; - - ,  
Ntu.g = 1.0. Numbers given are for the ratio =/y 

suggests that there exists an optimum charging time, 0op,, 
for minimum irreversibility for the storage process and 
that, away from this minimum, the specific irrevcrsibility, 
I,, tends to unity when the limiting values of 0 are zero or 
infinity• It is also apparent from these figures that the 
specific irreversibility, 1,, increases when less exergy is 
stored by creating more irreversibilities. This situation 
prevails when =/y increases (i.e., more heat leak), Nt,.j 

• - - ~ 1.0 . .  
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"~ - 1.4 
~= 0.6 ~.3 

- -  1 , 2  
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Figure 8 Fraction of exergy destroyed by heat transfer across a 
finite temperature difference for z = 0.2. - - - ,  Ntu,g = 2.0; - -  
Ntu.g --* ~ .  Numbers given are for the ratio ¢/y 
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Figure 9 
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Optimum parameters at minimum irreversibility 

I 
1.0 

specific irreversibility, the optimum charging time, 0opt, 
can be estimated from the optimum parameter r/. At the 

--* 0 limit, ~/is infinite: this confirms one of the situations 
when ~--.0, ~/y--* I, and Nt,.g--* ~ which is shown in 
Figure 4. At the other end of the curve is the ¢ ---, 1 limit 
where r/tends to infinity.This is an interesting situation 
which can be easily verified when ~--, 1 (i.e., T=.i = 0 K) 
and ~/y--, I (i.e., no heat leak). 

If the refrigeration storage unit operates in the optimum 
regime, the total amount of refrigeration stored as sensible 
heat at the end of the storing process is far from the 
maximum thermal storage capacity of the matrix. The 
optimum refrigeration corresponding to the maximum 
storage of useful work is shown in Figure 10. With 
reference to Figures 3-8, the motivation to store the 
maximum refrigeration energy runs the risk of storing 
none or a small fraction of useful work if the storing 
operation is not tuned to this optimum parameter. 

It has been observed from the entropy analysis of a 
non-adiabatic storage system that there exists a well 
defined optimum parameter, (=)0opt, for maximization of 
useful work stored in the system. Deviation from this 
optimum regime in an attempt to maximize the 
refrigeration storage leads to an unfavourable situation 
where there is more destruction of available work drawn 
from the cold source. 

1.0 

,1 ,o0,  J J 

0'5 

0.4 I I I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

= y r l a  

Figure 10 Fractional storage capacity of the matrix at minimum 
irreversibility. Numbers given are for the ratio = /y  

exponential decrement in Nt,,s of the storage unit. Hence, 
adequate care should be taken to minimize the leakage 
heat to obtain a better performance of the storage unit. 

It is important to recognize that there exists a great 
variety of other constraints for the engineering 
implementation of storage units based on the Second Law 
analysis. These constraints are mainly economic and 
practical in nature. However, the present work addresses 
only the thermodynamic aspect of designing the storage 
systems, discarding the other factors. 
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R e f e r e n c e s  

R e m a r k s  

Basically, the irreversibility phenomenon for a storage 
system deals with two losses: losses due to heat 
transfer across a finite temperature difference and losses 
due to fluid friction. The present analysis pertains to the 
former with the additional constraint of heat leak through 
the boundary. However, an optimum Ntu,s of the storage 
system, accounting for the above two losses, can be 
achieved by the addition of Bejan's analysis 3 for frictional 
losses with the present analysis. 

This analysis shows that the useful work stored in the 
unit is severely affected with leakage heat across the system 
boundary. Following Equation (21), this dissipated useful 
work in terms of non-effective Nt,.g is equal to the 
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