Fluctuation Induced Conductivity in YBa₂Cu₃O_{7-δ} + CoFe₂O₄ Composites

Dr. D. Behera DEPARTMENT OF PHYSICS NIT, ROURKELA

Plan of Presentation

• INTRODUCTION

- ✤ Signature features of cuprate superconductors
- Phase Diagram
- Excess conductivity
- Why study the excess conductivity
- EXPERIMENTAL DETAILS
- RESULTS AND DISCUSSION
- CONCLUSIONS

Signature features of cuprate superconductivity

- 1. Strong Correlation
- 2. Quasi-2D anisotropy
- 3. *d*-wave pairing, very short ξ
- 4. Spin gap, spin-pairing at T*
- 5. Strong fluctuations, vorticity
- 6. Loss of phase coherence at T_c

o SCOPF (Superconducting Order Parameter Fluctuation)

 n_+ no of spin up and n_- no of spin down

Paraconductivity region extends over a wide temperature region $(\pm 10K)$ around T_c in HTSC's due to

Very short coherence lengths
 High operating temperatures
 Layered structure of the conducting CuO₂ planes

$$\Delta \sigma$$
 (T) =1/ ρ_{M} - 1/ ρ_{R}

 ρ_{M} is the measured resistivty and ρ_{R} is the regular resistivity

Why study the excess conductivity $(\Delta \sigma)$?

To understand the origin of excess conductivity $\Delta \sigma$

To obtain superconducting coherence length $\xi \left(0 \; K \right)$

To obtain effective dimension of the Fluctuations

Addresstheverymechanismofsuperconductivity in HTSC's

Advantages of YBCO over other ceramic superconductors

O Stable compound with a T_c above 77 K.

- Neither toxic elements nor volatile compounds.
- Easy to make single-phase YBCO.
- High J_c at Higher magnetic Field.
- Suitable material for magnetic study

Focus of our study

To study the dimensionality fluctuation in YBCO/xCoFe₂O₄ composite samples.

EXPERIMENTAL

YBCO Preparation

✤ Y : Ba: Cu= 1:2:3

- Stirred in 2-methylethanol for 12 hours
- ✤ Dried and evaporated at 70-80°C
- Calcined at 900°C for 12 hours
- * YBCO + x CoFe₂O₄ (x = 0.0,0.1,0.2,0.3 wt.%) mixed
- Pelletized
- Sintered at 920°C for 12 hours
- ✤ Annealing at 500°C for 12 hrs in an oxygen supply
- * Both the components are prepared separately. $CoFe_2O_4$ is prepared through solid state route.

Characterization of samples

(a) DC Electrical Resistivity Study(b) Magnetisation ~Temperature Study

Temperature dependence of the resistivity for YBCO +**xCoFe**₂**O**₄ **composites** (**x** = 0.0,0.1,0.2,0.3 wt. %).

Resistive transition exhibits two different regimes:-

- Normal state that shows a metallic behavior (above 2Tc)
- Deviation from linearity due to cooper pairs give rise to excess conductivity or paraconductivity

Linear fitting of resistivity in the temperature range 150 to 250 K and extrapolated to 0 K gives resistivity slope (dp/dT) and residual resistivity ρ_0 of YBCO/xCoFe₂O₄ composites

Temperature derivative of resistivity of YBCO+ X CoFe₂O₄ composites (x = 0.0, 0.1,0.2,0.3 wt.%)

YBCO

 $YBCO + x CoFe_2O_4$

- T_c is defined at the peak position.
- T_c is observed to decrease by addition of $CoFe_2O_4$.

Temperature dependence of the Magnetisation for YBCO+xCoFe₂O₄ composites (x = 0.0,0.1,0.2,0.3wt.%)

 Composite samples shows completely Diamagnetic property i.e satisfying partial Meissner effect

Excess Conductivity

Excess conductivity $(\Delta \sigma)$ diverge as power-law given by AL theory

$$\Delta \sigma = A \epsilon^{-\lambda}$$

 $\epsilon = (T-T_c)/T_c$ is reduced temperature.

 λ =Critical exponent depends on Dimensionality(D)

$$\lambda = 2 - D/2$$

A = Temperature dependent parameter For 3D A = $e^2/32\hbar\xi(0)$ and $\lambda = 0.5$ For 2D A = $e^2/16\hbar d$ and $\lambda = 1$

Resistivity and excess conductivity as a function of temperature for YBCO

- 3D-XY-universality class close to T_c
 - $\lambda_{cr1} = 0.33$ called as the 3D XY-E (model-E dynamics.)
- $\lambda_{cr2} = 0.67$ static critical scaling
- $\lambda_{3D} = 0.5$ (3D fluctuation)
- $\lambda_{2D} = 1.0$ (2D fluctuation)
- $\lambda_{2D-SW}=3$ (short-wave fluctuation)

Excess conductivity (Do) varies as $\epsilon^{\text{-}\lambda}$

Log – Log plots of excess conductivity as a function of reduced temperature for YBCO

Fluctuations shows 3 regions
(a) Mean Field Region Exhibiting 2 slopes
(i) λ= 0.5 (3D fluctuations)
(ii) λ = 1 (2D fluctuations)
(b) Critical region (λ = 0.33)
(c) Short wave fluctuations One slope with λ = 3

Log–log plot of excess conductivity $1/\rho - 1/\rho_R$ as a function of reduced temperature $\epsilon = (T-T_c)/T_c$)

Log–log plot of excess conductivity $1/\rho - 1/\rho_R$ as a function of reduced temperature (ϵ)

Log–log plot of excess conductivity $1/\rho - 1/\rho_R$ as a function of reduced temperature (ϵ)

Log–log plot of excess conductivity $1/\rho - 1/\rho_R$ as a function of reduced temperature (ϵ)

Various Cross over temperatures in YBCO / x CoFe₂O₄ Composite with x = 0.0, 0.1, 0.2, 0.3 wt.%.

CoFe ₂ O ₄ (wt %)	Т _{с0} (К)	Т _с (К)	Т _G (К)	T _{LD} (K)	T _{2D-SW} (K)
0.0	83.60	89.31	104.14	128.08	148.63
0.1	80.89	82.92	104.01	125.45	138.55
0.2	78.77	81.58	103.24	115.67	127.55
0.3	69.17	71.09	90.14	104.71	113.95

Conclusions

- ***** With increase in wt.% of $CoFe_2O_4$ in YBCO the critical temperature T_c and T_{c0} decreases gradually.
- ✤ The different cross-over temperatures T_G, T_{LD}, T_{2D-SW} also decreases with increase in wt.%.
- Decrease in T_{LD} indicates that 3D fluctuation is dominant in the mean field region with increase in wt.% of CoFe₂O₄ in the composite.

REFERENCES

- [1] L.G. Aslamazov, A. I. Larkin, Sov. Phys. Solid State 10 (1968) 875
- [2] J. Lawrence, S. Doniach, in: E. Kanda (Ed.), Proc. 12th Conf. Low-temp. Phys, Kyoto, (Tokyo, Keigaku), (1970), pp. 361
- [3] G. Blatter, M.V. Fiegel'man, V. B. Geshkenbein, A. L. Larkin, V. M. Vinokur, Rev. Mod. Phys. 66 (1994) 1125
- [4] R. Ikeda, T. Ohmi, T. Tsuneto, Phys. Rev. Lett. 67 (1991) 3874
- [5] W.E. Lawrence, S. Doniach, in: E. Kanda(Ed.), Proceedings of the 12th International Conference on Low Temperature Physics (Kyoto, 1970), Keigaku, Tokyo, p.361
- [6] J.A. Veira, F. Vidal, Physica C 159 (1989) 468.
- [7] C.J. Lobb, Phys.Rev. B 36(1987) 3930.
- [8] L. Reggiani, R. Vaglio, A.A. Varlamo, Phys. Rev. B 44 (1991) 9541
- [9] Zhao, Y., Cheng, C.H. and Wang, J.S., Supercond. Sci. Technol. 18 S43 (2005).
- [10] Campbell,T.A,Haugan,T.J,Maartense,I. Murphy, J. Brunke,L. and Barnes, P.NPhysicaC423(2005)
- [11] He,Z.H.,Habisreuther,T.,Bruchlos,G.,Litzkendorf,D.andGawalek,W.PhysicaC356 277(2001)

