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The wave nature of heat propagation in a one-dimensional semi-infinite medium with 
lateral convective heat transfer is investigated by solving the hyperbolic heat 
conduction equation in the longitudinal direction. The situation involves a large 
relaxation time which is relevant at low temperatures or for materials with a non- 
homogeneous inner structure, and the heat conduction in the lateral direction is 
assumed to be parabolic due to the number of lateral heat wave reflections compared 
to those in the longitudinal direction. The results for a unit heat flux condition at the 
boundary are compared with those obtained f rom parabolic heat conduction. This 
reveals that the classical heat diffusion theory predicted by parabolic heat conduction 
significantly underestimates the magnitude of the temperature and heat flux in thermal 
wave propagation. The results also reveal that when the dimensionless lateral heat 
transfer, known as the wave shape factor, is equal to unity, the thermal wavefront 
which travels through the medium at a finite speed decays exponentially along its path 
of travel while retaining the shape of the input wave. This theoretical prediction can be 
implemented experimentally for estimation of thermal relaxation times. 

Keywords: thermodynamics; heat transfer; thermal waves 

Nomenclature 

A 
C 
g(0 
C(s) 
h 
K 
P 
q 
qo 
qt, 
q0 
s 
t 
tD 
T 
To 
To 

Cross-sectional area of medium (m 2) 
Specific heat of medium (J kg -1 K -1) 
Function in time 
Laplace transformation to function G(t) 
Heat transfer coefficient (W m -2 K -1) x 
Thermal conductivity (W m -1 K -1) XD 
Perimeter of medium (m 2) z 
Heat flux (W m -2) Z 
Dimensionless heat flux (=q/qo) 
Transformed dimensionless heat flux 
Input heat flux (Wm -2) 
Laplace transform variable 
Time co-ordinate (s) a 
Dimensionless time variable (=t/~') /3 
Temperature (K) P 
Initial temperature of medium (K) ~" 
Dimensionless temperature ~b 
[= ( T -  To) ( P ~ ) / q 0 ]  

¢0 
u 
U 
v 

Transformed dimensionless temperature 
Intermediate variable for time 
Unit step function 
Speed of propagation of thermal wave 
[= V~-~-)] (ms-') 
Spatial co-ordinate (m) 
Dimensionless spatial variable [ = x / V ~ ]  
Intermediate variable [= (u 2 - x~)) 1/2] 
Intermediate constant [= (t~ - x2)  l/e] 

Greek letters 

Thermal diffusivity [= K/pC] (m 2 s -1) 
Intermediate variable [= ~/(s + ~b) (s + 1)] 
Density of medium (kg m -3) 
Thermal relaxation time (s) 
Wave shape factor or dimensionless heat 
dissipation factor [= hPr/ApC] 

When considering transient heat flow, for short times, 
extreme thermal gradients or temperatures 
approaching absolute zero (liquid helium), the classical 
heat diffusion theory predicted by Fourier breaks 
down. In the classical theory of heat conduction, the 

heat flux is postulated to be directly proportional to the 
temperature gradient 

q = - K g r a d  T (1) 

When this flux law is combined with the following 
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energy conservation equation (without internal or 
external heat interaction) 

OT 
p C  = - div q (2) 

Ot 

the heat conduction becomes parabolic in nature. The 
resultant parabolic heat conduction equation, given by 

OT 
= c~V2T (3) 

Ot 

is a diffusion phenomenon which is predicted by 
Fourier. It shows that a thermal disturbance at any 
distant point in a medium will be instantaneously felt at 
every point in that medium. Despite this physically 
unrealistic notion of instantaneous heat diffusion with 
infinite propagation speed, the heat flow predictions 
given by Equation (3) are quite reliable for most 
situations encountered in practice. 

Strictly speaking, the Fourier law of heat conduction 
should be applied to low rate, steady state transfer 
processes, and physically speaking there must be a time 
scale for which the validity of this law is violated. In 
situations dealing with transient heat flow of extremely 
short duration, for that short time of higher input 
temperature or heat flux pulses at the boundary, the 
classical heat diffusion theory becomes invalid. Also, at 
very low temperatures the rapid rate of heat conduction 
due to excited phonons forbids the use of the Fourier 
law. In these situations, heat has been observed to 
travel as a wave with a finite propagation speed. Using 
superfluid helium at a temperature near absolute zero, 
Peshkov I in 1944 experimentally detected the existence 
of these thermal waves. He referred to this pheno- 
menon as 'second sound' because of the similarity 
in wave velocity between these thermal waves and 
ordinary acoustic waves. The phenomenon of 'second 
sound' persists in solid as well as liquid helium due to 
the presence of excited phonon gas. 

To incorporate the finite propagation speed while 
retaining the basic nature of the Fourier law, Morse 
and Feshbach 2 in 1953 and later Vernotte 3'4 in 1958 and 
Cattaneo 5 in 1958 formulated a modified heat flux law 
originally suggested by Maxwell 6 in 1867, in the form 

aq 
q + r  = - K V T  (4) 

Ot 

When the flux law of the form given by Equation (4) 
is used in conjunction with the conservation law 
[Equation (2)] a hyperbolic heat conduction equation 
results, as opposed to the classical parabolic equation 
based on the flux law [Equation (1)]. It is reported by 
Chester 7 that Equation (4) is actually a truncated form 
of an extensive relation originally derived by Maxwell 6 
from kinetic theory considerations. By applying a 
different approach based on irreversible thermo- 

Luikov also arrived at the same conclusion. dynamics, 8 
In Equation (4), r represents the relaxation time or 

build-up period for the initiation of heat flow after 
a temperature gradient has been imposed at the 
boundary of the medium. It states that heat flow does 
not start instantaneously, but rather grows gradually 
with a relaxation time r after the application of the 
temperature gradient. Conversely, there is a time lag 
for the disappearance of the heat flow after the removal 

of the temperature gradient. In fact, the relaxation time 
r is associated with the communication 'time' between 
phonons (phonon-phonon collisions) necessary for 
commencement of heat flow and is a measure of the 
thermal inertia of the medium. A typical value of the 
relaxation time r for metals at ambient temperature 
has been reported 9 to be of the order of 10-1rs, while 
recent work by Kaminski 1° on materials with a non- 
homogeneous inner structure revealed values of r of 
the order of fractions of a minute. When the relaxation 
time r is relatively large, as is the case for tempera- 
tures near absolute zero, thermal disturbances appear 
to propagate as waves at finite speeds, as observed 
experimentally by Peshkov I and Bertman and 
Sandiford 11. At a critical point the limit situation r---~ 0 
leads to instantaneous diffusion at an infinite propaga- 
tion velocity, which coincides with classical diffusion 
theory. 

Advances in research on heat transfer at a finite 
propagation velocity have resulted in increased interest 
in the solution of hyperbolic heat conduction. Analy- 
tical and numerical solutions concerning certain models 
are given in the literature for some specific cases. 

The wavefront resulting from a step change in 
temperature at the boundary of a medium is demon- 
strated by Mikic 12 and Baumeister and Hamil113'14. The 
solution to the problem due to a step change in heat 
flux at the boundary is given by Maurer and 
Thompson 15, while its numerical solution using the 
method of characteristics is obtained by Wiggert 16. 
When the region of a finite medium is considered, the 
thermal disturbance in the medium becomes a super- 
imposed effect of forward and backward travelling 
waves. The backward travelling waves are the reflec- 
tions off the boundaries. These problems, with dif- 
ferent boundary conditions, are solved by Taitel J7 and 
Carey and Tsai 18. 

With respect to the analysis of propagation of 
thermal disturbances in a medium containing distri- 
buted volumetric energy sources, it is important to 
compare the experimental results obtained by Bertman 
and Sandiford 1 r. In this respect, the analysis for a semi- 
infinite medium is given by Vick and Ozisik 19, while 
that for a finite medium is given by Ozisik and Vick 2°, 
Frankel et aL 21 and Gembarovic and Majernik 9. 

For situations in which analytical solutions are 
difficult to obtain, as in the case with radiation or with 
temperature-dependent thermal conductivity, hyper- 
bolic heat conduction equations are solved by Glass 
and Ozisik, with McRae and Vick 22'23 and with Vick 24. 
An exhaustive literature review on the development of 
ideas about heat waves is presented by Joseph 25. 

For hyperbolic heat conduction dealing with small 
values of r (--~10-1ls), the wave phenomenon is 
observed over a small region (~ 10 -8 m) 9, and beyond 
this region parabolic heat conduction prevails. So 
convective heat transfer from the lateral surface 
becomes unrealistic. But at higher values of r the 
wave phenomenon is observed over an appreciable part 
of the medium. There is a gap in the literature on 
reported values of r for solids at cryogenic tempera- 
tures. Apart from solid helium 26, s o m e  alkali halide 
crystals 27 are promising in this respect. One of the most 
promising and widely used dielectric materials is 
diamond. It has been recently reported 28 that diamond 
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has a high relaxation time ~- ( ~  10-30 at liquid 
nitrogen temprature (77K) and exhibits hyperbolic 
heat conduction in a macroscopic sample, as observed 
over an appreciable part of the medium. 

In a one-dimensional semi-infinite medium, as in the 
case of a one-dimensional long fin, the lateral surface is 
exposed to a convective environment. Thus, during 
heat flux wave propagation in the lateral direction, a 
certain amount of heat flux is dissipated in the medium 
itself, while some is transmitted through the convective 
boundary, and the rest is reflected back to the medium. 
As the lateral 'length' is very small compared to that in 
the longitudinal direction, there will be a number of 
reflections of the heat wave in the lateral direction 
before the wave travels an appreciable distance in the 
longitudinal direction. Since each reflection in the 
lateral direction dissipates a certain amount of heat flux 
in the medium itself, it may be assumed that heat 
conduction along in this direction resumes its parabolic 
nature. Also, due to the smaller lateral dimension, we 
can assume that the temperature is constant for a low 
temperature gradient. So the lateral heat transfer is 
governed by convection between that constant temp- 
erature in the medium and the ambient temperature. 

There appears to be no work in the literature 
addressing such a phenomenon. At cryogenic or high 
temperatures this phenomenon becomes severe. Thus 
the objective of the present investigation is to develop 
solutions for the temperature and heat flux as predicted 
by hyperbolic heat conduction in a one-dimensional 
long fin subjected to parabolic lateral heat transfer with 
a step input of heat flux at the boundary. 

H y p e r b o l i c  h e a t  c o n d u c t i o n  

The present investigation concerns a one-dimensional 
semi-infinite medium with lateral heat transfer, where 
one-dimensional heat conduction and constant thermal 
properties prevail. The medium is initially in equili- 
brium at an ambient temperature To and the analysis is 
focussed on the propagation of a thermal disturbance 
initiated by a step input of heat flux at the boundary. 
The system and its control volume are illustrated 
schematically in Figure I. 

Governing equations 

The one-dimensional conservation equation for rectan- 
gular co-ordinates with lateral heat transfer, as shown 
in Figure 1, may be written, by modifying Equation (2), 
a s  

Oq OT hP 
+ p C  -~t  + --z- ( T -  To) -- 0 (5a) 

0--~- A 

h PP, x ( T - T o l  

Ul t )  qx ~ :-qx + ax 

t - O  " 

Figure 1 Schematic diagram of system (see text for deta i ls)  

where h represents the heat transfer coefficient 
between the medium and its environment, and P and A 
are the perimeter and cross-sectional area, respec- 
tively. The modified heat flux equation given by 
Equation (4) may be written for a one-dimensional case 
a s  

0 T 0q + 0 (5b) K ~ + r  q =  
Ox Ox 

Equations (5a) and (5b) are the coupled hyperbolic 
partial differential equations for analysis of the hyper- 
bolic heat conduction problem. These equations are 
subjected to the initial conditions 

T(x, 0) = To 

q (x, 0) = 0 

and the boundary conditions 

q (0, t) = qo U(t) 

q(x,  t) --~0; x---~ 

(6a) 

(6b) 

(7a) 

(7b) 

Using the method of characteristics ~6, the velocity of 
propagation of the wavefront is given by 

dx 
- -  = v = ( ~ / r )  " 2  
dt 

For convenience in the subsequent analysis, the 
following dimensionless quantities are defined: 

dimensionless distance, xi9 = x / ( a ~') 1/2 

dimensionless time, to = t/'r 

dimensionless temperature, To = ( T -  To) 
X (pCK/r)l/Z/qo 

dimensionless heat flux, qD = q/qo 

wave shape factor, & = hP ~ /A pC 

With these dimensionless quantities, the set of 
Equations (5), (6) and (7) are reduced to Equations 
(8), (9) and (10), respectively, as 

Oqo OTD 
+ + 6 To = 0 (8a) 

OX D OtD 

OTD Oqo 
- -  -t- + q D  = 0 (8b) 
OXD OtD 

To (XD, 0) ---- 0 (9a) 

qo (XD, 0) ----- 0 (9b) 

qD(0, tD) = U(tD) (10a) 

qo(XD, to) ~ 0; XD ~ o0 (10b) 

The solution to the above governing system of 
equations is developed in the following section. 

Analysis 

The system defined by Equations (8), (9) and (10) can 
be solved by the application of a Laplace transform 
with respect to temporal variables. The appropriate 
subsidiary equations are obtained from Equations (8a) 
and (8b) by the application of the initial conditions 
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given by Equations (9a) and (9b). These equations are 

dtiD = -- To (s + ~) ( l la)  
dXD 

dTD 
- - - -  qD (S "1- 1) ( l l b )  
dXD 

with the boundary conditions 

fflD(O, S) = I[S 

I~D (XD, S) -"-> 0;  X D ~ 00 

(12a) 

(12b) 

where 

f0  c¢ t~D = qD(XD, to) exp (--StD) dtD 

and 

f0  0 i"o = To (xo, tD) exp (--StD) dtD 

By eliminating dimensionless temperature from the 
subsidiary Equations ( l la)  and (l lb) ,  the equation for 
dimensionless heat flux is obtained as 

d2qD 
dx 2 = (lo(S +dp)(s+ 1) (13) 

The solution to Equation (13) for the boundary 
conditions given by Equations (12a) and (12b) is 

t~o = (l/s) exp ( -  flXo) (14a) 

From Equations ( l la)  and (14a) the dimensionless 
temperature is derived as 

# 
7"0 - -  exp (--flXo) (14b) 

s(s+6) 
where/3 2 = (s+~b)(s+ 1). 

Using the table of Laplace transforms 29, the inverse 
transform of Equations (14a) and (14b) is expressed as 

qD = U(tD - XD){exp [--XD (~b + 1)/2] + (~b - l)(xo/2) 

X fi"2 ( exp [ - (~b+ l )  u/2] l,(~b-1)z z / 2 )  du} 

(15a) 

and 

f 
To = U(tD -Xo)~ exp [ - t o  (~b + 1)/2] I0 [(¢b - 1) Z/2] 

f) / + (exp [ -  (4' + 1) u/2] I0 [(4~ - 1) z/2]) du 
J o 

(15b) 
where Z 2 =  t ~ - x  2 and z 2 = u 2 - x  2. Io and Il are 
modified Bessel functions of the first kind for zero 
order and first order, respectively. 

It is of practical interest to evaluate the following two 
limiting cases for dimensionless temperature. 

Case 1: xo -~ 0 

The dimensionless surface temperature can be obtained 
either from Equation (14b) or from Equation (15b) 
by putting XD = 0, as 

TD(0, to) = exp [--to(& + 1)/2] Io[(qb-- 1) to/2] 

f0 '° + exp[-(rk+l)u/2]Io[(da-1)u/2]du (16) 

Case 2: XD --~ 0 and tD -~ 0 

The dimensionless initial surface temperature can be 
obtained from Equation (16) in the tD--~ 0 limit as 

lim TD(0, to) = 1 (17) 
ID---~ 0 

This relation can also be obtained directly from 
Equation (14b) at xo = 0 by using the Laplace trans- 
form theorem 

Lim g(t) = Lim sG(s) 
t---~ 0 s---¢ ~ 

where G(s) is the Laplace transform of function g (t). 
The latter solution indicates that a solid subjected to 

a step change in the surface heat flux with lateral heat 
transfer also experiences an initial jump in surface 
temperature. The solution to the hyperbolic heat 
conduction equation without lateral heat transfer for a 
step input of heat flux can be derived from Equations 
(15a) and (15b) by substituting ~b = 0. The resultant 
equations are 

qD = U(tD -- xo){exp (--xo/2) 

+(XD/2) f ~ [ e x p ( - u / 2 ) ~ ] d , }  (18a) 

and 

To = U(to -- xo){exp ( -  tel2) Io(Z/2) 

fx D } + [exp ( -  u/2) Io(z/2)] du (18b) 
o 

where Z 2 = 2 2 z 2 = U 2 t t~-Xo and - x  2. I0 and 11 
represent modified Besse! functions of the first kind 
for zero order and first order, respectively. These 
equations are the same as those derived by Maurer and 
Thompson 15. 

Significance of  wave shape factor ¢b 

The dimensionless lateral heat transfer parameter plays 
an important role in the analysis of hyperbolic heat 
conduction. It is interesting to note that for ~b equal to 
unity, Equations (15a) and (15b) reduce to 

qD ---- exp (--XD) U(t D - -  XD) (19a) 

To -- exp (--XD) U(to --XD) (I9b) 
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This result indicates that for a unit step input of 
dimensionless heat flux, the temperature and heat flux 
itself propagate in the medium as square waves which 
decay by a factor exp (--XD) over a distance XD. 

SO the shape of the input wave is retained by 
the propagating waves in the medium. In general, for 
4' = 1, if the input of dimensionless heat flux is given 
by some general function f(tD), then the response can 
be easily derived from Equations ( l la)  and (lb) as 

qD ---- exp (--XD) f( tD -- XD) U(to - xo)  (20a) 

and 

To = exp (--XD) f ( tD -- XD) U(tD -- XD) (20b) 

In these general solutions also the heat flux and 
temperature retain their shape but the magnitudes 
decay exponentially. To be more general, if instead of 
heat flux, a step input of temperature is applied at the 
boundary, an analogous situation prevails. Due to this 
peculiar nature of 4', by which the input wave shape is 
reproduced, it is referred to as the 'wave shape factor' 
by the present author. An experimental method for 
determination of the relaxation time ~- based on this 
theory is described in a later section. 

According to heat transfer terminology, 4' may be 
defined as the ratio of energy transfer laterally over the 
relaxation time to the internal energy stored by the 
medium. Since relaxation time r has a wide range of 
values, it may be greater than, equal to or less than 
A p C I h P ,  depending on the material properties and 
heat transfer characteristics. Thus h P r / A p C  yields 
the corresponding dimensionless values of 4,. 

Parabolic heat conduction 

Though the solution of parabolic heat conduction with 
lateral heat transfer is not the essential aspect of the 
present investigation, its importance is recognized for 
comparison with hyperbolic heat conduction. The 
solutions for parabolic heat conduction based on the 
present dimensionless parameters and boundary condi- 
tions are not directly available in the literature. Hence 
it will be useful to review the solution procedure on the 
basis of the current analysis. The solution procedure for 
parabolic heat conduction is given in the Appendix. 

Results and discussion 

Numerical computations for the hyperbolic and para- 
bolic heat conduction equations are performed to 
examine the behaviour of the temperature and heat 
flux distributions. For comparative purposes, both 
cases are plotted on the same figure. The equations 
involved for hyperbolic heat conduction are (15a) and 
(15b) along with the limiting cases described by 
Equations (16), (17), (18a) and (18b); whereas in 
parabolic heat conduction, equations (A5a) and (A5b) 
along with its limiting cases described by equations 
(A6a), (A6b) and (A6c) are utilized. 

Figure 2 shows the variation of surface temperature 
with time. The temperature for hyperbolic heat con- 
duction either increases, decreases or remains constant, 
depending on whether the wave shape factor 4' is less 

1 ' 6 ~ ,  I ' I ' I t I ' I ~ [ ' i ~ I ~ i ' I ' ! L 

1 . 4 ~  .... 

o.sj- : 

~ o,8~ 

0 6  / ~ 

/? -- 

~ - 

N 0.24 
- 

0 . 0  I , I ~ I ~ I , I ~ I , I , I , I ~ I ~ I , 
0 . 2  0 .4  0 . 6  0 . 8  1.0 1.2 

D IMENSIONLESS T I M E ,  t D 

Figure 2 Dimensionless s u r f a c e  t e m p e r a t u r e  p r o f i l e s  ( xo  = O) 
v e r s u s  d i m e n s i o n l e s s  t i m e  f o r  - - - ,  p a r a b o l i c  a n d  - -  
h y p e r b o l i c  h e a t  c o n d u c t i o n  e q u a t i o n s .  N u m b e r s  g i v e n  a r e  w a v e  
shape f a c t o r  

than, greater than or equal to unity. This results from 
the imbalance between input heat flux and lateral heat 
dissipation. In particular, for a wave shape factor 4, 
equal to unity, the lateral heat loss is just sufficiently 
balanced to maintain a constant temperature profile. 
But the net heat flux decreases or increases depending 
on 4, being greater than or less than untiy. This net 
heat flux in the medium results in a decrease or increase 
in the temperature profile. 

The uniqueness of the hyperbolic mode of heat 
conduction is to produce an initial surface temperature 
jump at all values of 4,, as evident from Equation (16) 
and Figure 2. In the other set of curves in the same 
figure, parabolic heat conduction builds up from the 
initial zero reference temperature with time, but with 
increasing values of 4, the temperature profiles become 
more flattened due to a greater amount of lateral heat 
dissipation. 

Figure 3 depicts temperature versus position at 
selected values of time (i.e. tD = 0.2, 0.5 and 1.0). To 
show the effects of lateral heat dissipation, this graph is 
repeated in Figures 3a, b, c and d for a wave shape 
factor 4, of 0.0, 0.5, 1.0 and 1.5, respectively. The 
striking feature of these graphs is that for hyperbolic 
heat conduction energy input in terms of heat flux gives 
rise to a thermal wavefront which travels in the medium 
at a finite velocity and decays exponentially, while 
dissipating its energy along its path. In Figure 3a this 
dissipation of energy is through the medium itself due 
to the adiabatic lateral surface (4' = 0.0). But for other 
values of 4', additional energy dissipation takes place 
across the lateral surface. So, with increasing values of 
4', the energy dissipation increases and hence, the 
amplitude of the thermal wave decreases at any 
particular point in time. 

The most interesting feature of these plots is that for 
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F i g u r e  3 Dimensionless t e m p e r a t u r e  p r o f i l e s  v e r s u s  dimensionless distance with various w a v e  s h a p e  f a c t o r s :  
(a) ~b= 0.0; (b) ~b=O.5; (c) ~b= 1.0; (d) ~b= 1.5, for . . . .  , parabol ic and , hyperbol ic heat conduction 
equations. Numbers given are dimensionless t ime 

a wave shape factor 4) less than unity the temperature 
curves shift down with increasing time, as shown in 
Figures 3a and b, whereas for a wave shape factor ~b 
greater than unity this trend is reversed, as shown in 
Figure 3d. But in the case of a wave shape factor ~b 
equal to unity, all the temperature profiles merge to 
form a single curve, though the wavefronts are at 
different positions, as shown in Figure 3c. This 
behaviour of the temperature profile is due to the 
surface temperature, as described earlier in Figure 2, at 
the origin of the thermal wavefront. For example, the 
behaviour of the temperature profile in Figure 3d is due 
to the decreasing nature of the surface temperature in 
Figure 2 for ~b > 1.0. Irrespective of the temperature 
variation with ~b, these plots exhibit propagation of the 
thermal wavefront in the medium at a finite speed and 
the medium is undisturbed beyond this wavefront. In 
contrast to this phenomenon, parabolic heat conduc- 
tion shows a 'down-shifting' of the temperature profiles 
with increasing values of time and wave shape factor 
~b, due to a proportional increase in lateral heat 
dissipation. 

Figure 4 shows the temperature response at positions 
XD = 0.1, 0.4 and 0.8 with increasing values of wave 
shape factor ~b (i.e. ~b = 0.0, 0.5, 1.0 and 1.5) on the 
respective figures (Figures 4a-d). Hyperbolic heat 
conduction indicates that the temperature wave is not 
instantaneously felt at any point in the medium, but 
that there is a time lag before the wavefront travels to 
that point. This time lag for the onset of the thermal 
wave is independent of ~b. For a wave shape factor ~b 
either greater than, equal to or less than unity, the 
temperature profile changes its shape accordingly. The 
temperature builds up for ~b < 1, remains stationary for 
~b = 1 and decays for ~b > 1, as shown in Figures 3a-d. 
This observation is supported by the fact that at ~b = 1, 
the lateral heat dissipation is just sufficient to maintain 
a steady state temperature, whereas at ~b greater than 
or less than unity, the net heat in the medium is 
deficient or in surplus, respectively. These figures also 
indicate that hyperbolic heat conduction approaches 
the parabolic state at higher values of time, and this 
phenomenon accelerates with increasing values of ~b. 
Hence, it may be inferred that at higher values of wave 
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Figure 4 D imens ion less  t e m p e r a t u r e  p ro f i l es  v e r s u s  d i m e n s i o n l e s s  t ime  w i th  v a r i o u s  wave shape fac tors :  (a) 
d~=O•O; (b) d~=0.5;  (c) ~b= 1.0; (d) & =  1.5, f o r - - - ,  pa rabo l i c  and ~ ,  hype rbo l i c  heat  conduc t i on  
equat ions .  N u m b e r s  g i ven  are d i m e n s i o n l e s s  d is tance  

shape factor ~b, the wave nature of thermal propaga- 
tion is retained by an appropriate time delay but at later 
times the wave nature of thermal propagation behaves 
as a diffusion-like phenomenon. 

Figures 5 and 6 are drawn in a similar way to Figures 
3 and 4 to show the flux distribution predicted by the 
hyperbolic and parabolic heat conduction equations at 
given values of ~b. In Figure 5 the heat flux is plotted 
versus position at various times and in Figure 6 these 
two independent parameters are interchanged. The 
temperature solution described in Figures 3 and 4 is the 
result of the application of heat flux as a boundary 
condition. Unlike this solution, Figures 4 and 5 illus- 
trate the propagation of the imposed boundary heat 
flux itself• 

As shown in Figures 5a and b, hyperbolic heat 
conduction portrays flux wave propagation through the 
medium at a finite speed. The wave decays exponen- 
tially along its path of travel by dissipating energy along 

the medium in addition to lateral heat dissipation. The 
presence of lateral heat dissipation is due to a non-zero 
value of ~b. With a wave shape factor equal to unity, 
Figure 5b exhibits a single flux profile where the wave 
travels to different positions depending on the duration 
of wave propagation. This observation is similar to that 
described for the temperature solution in Figure 3c. For 
comparison, the parabolic heat conduction curves are 
drawn in the same figures to show the diffusive nature 
of heat conduction. 

As shown in Figures 6a and b, hyperbolic heat 
conduction portrays the time delay for the initiation of 
the heat flux wave at a position in the medium. The 
most interesting part of this analysis is the shape of the 
flux wave depicted in Figure 6b. This figure indicates 
that hyperbolic heat conduction reproduces the shape 
of the input heat flux at any position for ~b= 1. 
Though the magnitude of the heat flux decays with 
position, its shape is retained. When heat flux propaga- 
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Figure 5 Dimensionless heat flux v e r s u s  dimensionless 
distance with various wave shape factors: (a) ~ = 0.0; (b) 4)= 
1.0, f o r - - - ,  parabolic and , hyperbolic heat conduction 
equations. Numbers given are dimensionless time 

tion is compared for both cases of heat conduction, 
these figures show that hyperbolic heat conduction 
approaches the parabolic state earlier with an increas- 
ing wave shape factor ~b, i.e. with increasing lateral 
convection. These observations are similar to the 
temperature solution described in Figure 4. 

Recently, several questions have arisen in connection 
with the experiments involving the determination of 
relaxation time. The present analysis utilizes a novel 
technique to estimate the relaxation time from heat 
transfer measurements. The heat transfer coefficient 
used in this analysis is based on an average value over 
the spatial and temporal co-ordinates for a similar 
situation of unsteady state parabolic heat conduction. 
In general, the Biot or Nusselt number gives an 
estimation of the heat transfer coefficient which can be 
varied by the influence of the Reynolds and Prandtl 
number in the functional correlations. Following from 
Figure 6b, the lateral heat transfer coefficient can be 
adjusted to reproduce the shape of the input heat flux 
on an oscilloscope at the specified position in a long 
conducting medium. By measuring the decrement in 
flux amplitude, the relaxation time can be calculated 
from Equation (19a). However the same technique can 
be applied if, instead of heat flux, the temperature 
gradient is applied at the boundary. 

It is important to note that the presence of lateral 
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Figure 6 Dimensionless heat flux v e r s u s  dimensionless time 
with various wave shape factors: (a) 4)= 0.0; (b) ~ =  1.0, for 

• parabolic and ~ ,  hyperbolic heat conduction equa- 
tions. Numbers given are dimensionless distance 

heat transfer cannot be ignored in the analysis of 
the wave nature of energy transport, and such heat 
transfer is prevalent under conditions of larger values 
of ~" (10-3s and more), as in the case of materials with 
a non-homogeneous inner structure or heat conduction 
at cryogenic temperatures. The results of the present 
analysis, showing the propagation of desired wave 
shapes as predicted by hyperbolic heat conduction, are 
beyond the domain of the classical diffusion theory 
commonly used in practice. 
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Appendix 

The one-dimensional energy conservation and flux 
equations for parabolic heat conduction with lateral 
heat transfer can be obtained from Equations (1) and 
(5a) in dimensionless form as 

OTo 
qD + = 0 (Ala) 

0XD 

OqD + 07"0 + ~b TD = 0 (Alb) 
OXD Ot D 

These equations can also be obtained from Equations 
(8a) and (8b) by eliminating (OqD/Otu) in Equation 
(8b) 

The governing differential Equations (Ala) and 
( A l b ) ,  along with its initial conditions given by 
Equations (9a) and (9b), can be solved by the 
application of Laplace transformation. The resultant 
equations in the Laplace plane are 

d#D 
= -- 7"o (S + ~b) (A2a) 

dXD 

- / 

= - -qD (A2b) 
dXD 

By eliminating the temperature parameter from the 
above equations the subsidiary differential equation of 
dimensionless flux is obtained as 

d2t]D 

- O D ( s  + 

axe, 
(A3) 

Using the boundary conditions given by Equations 
(12a) and (12b), the solution to the subsidiary differen- 
tial equation (A3) is 

1 
0D = -- exp [-- V~(s + ~b) xo] (A4a) 

s 

From Equations (A2a) and (A4a), the solution for 
dimensionless temperature in the Laplace plane is 

1 
?~o = s X/(s + ~b-------) exp [ -  V~(s + ~b) Xo] (A4b) 

Using the table of Laplace inversion given in work 
by Carslaw and Jaeger 3°, the solutions of Equations 
(A4a) and (A4b) are 

1 
qo = 2  (exp [ - x ° V ' ( - ~ l  effc [XD/(2V~D)- ~ ) ]  

+ exp [XD V ~ ) I  effc [Xo/(2 V~D) + "X/(~bto)]} 

(A5a) 

TD = [1/2X/(-~] {exp [--XDX/(-~] erfc [XD/(2X/~D) 

-- X/(4,tD)I - exp [XD ~r(-~] erfc [XD/(2V~D) 

+ ~/(4~/o)]} (A5b) 

Under limiting values of the dimensionless parameters, 
Equations (A5a) and (A5b) can be modified as follows. 
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Case 1: dp ~kO, xo --~ O 

The surface temperature is obtained from Equation 
(A5b) as 

To = erf [ ~ ] / V ~  (A6a) 

Case 2: dp--~ O, xo¢O 

Without lateral heat transfer, Equation (A5b) yields an 
indeterminate form. But its solution can be obtained by 
Laplace inversion of Equation (A4b) with ~b ~ 0 from 

the inversion table 3° as 

TD = 2{ (tV(tD/~) exp (--x2/ato) 

-- (xD/2) erfc [xo/(2 X/t-0-D)]} (A6b) 

Case 3: cb--~O, Xo--~O 

The surface temperature from the previous case can be 
obtained by substituting XD = 0 in Equation (A6b). 
The resultant equation is 

To = 2 V'(to/Tr) (A6c) 
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