
Effect of temperature-dependent specific 
heat of the working fluid on the 
performance of cryogenic regenerators 

R.K. Sahoo and S. Sarangi 

Cryogenic Engineering Center, ndian Institute of Technology, Kharagpur (WB) 721 302 ,  
India 

Received 15 February 1985 

The governing differential equations of a regenerator operating with a fluid with temperature- 
dependent specific heat have been formulated in terms of characteristic reduced parameters. A 
numerical solution of these equations is presented for several combinations of fluid-flow 
parameters using normal and parahydrogen as working fluid. It is observed that a constant 
specific heat model with the harmonic mean reduced length is adequate except at large values of 
reduced length or period and when the specific heat variation exceeds a factor of two over the 
temperature range. The matrix and gas exit temperature profiles, however, show a significant 
difference between the two models, which may be critical in some applications. 
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A regenerator essentially consists of a porous medium 
called the matrix, through which the hot and cold 
fluids flow alternately. The exchange of energy between 
the two fluid streams takes place by transfer of heat 
from the hot fluid to the matrix and its subsequent 
transfer to the cold fluid. That is why regenerators are 
often termed as "storage-type heat exchangers" in 
contrast with recuperators or "transfer-type heat 
exchangers'. 

Regenerative heat exchangers have been used in 
hot-air engines, Cowper stoves in steel making gas 
turbines and air separation systems. In recent years, 
they have also found extensive use in small cryogenic 
refrigerators based on Stirling, Gifford-McMahon,  and 
similar cycles, in which they constitute the single most 
important component  The classical design procedure 
for regenerators is given by HausenL The effectiveness 
is expressed graphically in terms of two dimensionless 
parameters: reduced length, A, and reduced period, 11, 
defined as 

hAL hAP 
A - a n d  11 - GgCp 2PmC m 

where 

h = heat transfer coefficient 

A = heat transfer area per unit volume 

L = length of regenerator 

P = total period of a cycle 

Gg = fluid mass velocity 

P m =  density of the matrix 

Cm, Cp = specific heats of matrix and fluid respectively 

In many regenerator applications, the working fluid 
undergoes a hlrge temperature change from inlet to 
exit In such cases due consideration must be given to 
lhe fact that fluid properties, such as viscosity, thermal 
conductivity and specific heat, may vary considerably 
along the bed. Among the working gases used tit 
cryogenic temperatures, hydrogen shows significant 
variation of specific heat with temperature. As 
hydrogen is receiving increasing attention as a future 
automotive fuel and (in many countries where helium 
is not easily available) as a working fluid in Stirling 
and other regenerative cryorefrigerators, it is time to 
develop a design procedure for regenerators with 
temperature-dependent specific heat of the fluid` The 
heat capacity of the matrix is also temperature 
dependent 2, often more strongly than that of the fluid` 
In this Paper, however, it is assumed to be constant to 
highlight the effects of variable fluid specific heat 

Since the fluid specific heal Cp, is a function of 
temperature, it is not possible to define a unique 
dimensionless length, A. It is possible, however, to 
define a characteristic dimensionless _ length, 
~k = h A L / G g C p  t o  characterize a regenerator, Cp being 
a characteristic specific heat 

In this Paper. the governing difl'erential equations 
have been lbrmulated in terms of the characteristic 
dimensionless parameters A and I1. The restllting 
equations tire a pair of coupled hyperbolic partial 
differential equations 3. They have been reduced to 
finite difference form and solved numerically. 
Temperature profiles and effectiveness wtlues lbr a 
wide range of flow parameters have been presented 

and compared with calculations based on constant 
specific heal 

Governing equations 
In deriving the governing differential equations for the 
regenerator, the following assumptions are made: 

1 the fluid flow through the regenerator is parallel and 
uniform throughout any cross-section; 

2 the thermal conductivity of the matrix is zero in the 
direction of fluid flow and infinite perpendicular to 
it Therefore, the regenerator may be characterized 
by the temperature profile along the flow axis, the 
temperature being uniform over any cross-section; 

3 the convective heat transfer coefficient is constant 
throughout the regenerator: 

4 the thermal properties of the fluid and matrix 
materials, except fluid specific heal are constant; 

5 fluid hold-up and pressure cycling have no effect on 
the performance of the regenerator, 

6 no phase change of the working fluid takes place 
within the regenerator, 

7 the boundaries are adiabatic and there is no heat 
exchange with the surroundings; 

8 the regenerator is in balanced operation, i.e. 
Gg.h = Ge~ c and Ptl = Pc = P/2; 

9 regular periodic conditions have been established 
lbr all matrix elements. 

On the basis of  these idealizations, the energy 
conservation relations over a differential element of the 
regenerator may be expressed as 

aEg 
Gg ay = hA(Tm - Tg) ( la)  

and 

aTm 
PmCm at - h A ( T g -  Tin) ( lb)  

where 

Eg = enthalpy of the fluid 

T m, Tg = temperatures of matrix and fluid, respectively 

y =  distance coordinate 

t = lime coordinate 

The associated boundary and reversal conditions are: 

Tg(y = 0, t) = Thi 

Tg(V = L, t) = Tci 

for 0 < t <<- P/2 

for P]2 < t <~ P (2) 

Tin(y, t+P) = Trn(Y, t) for 0 < y  ~ L  

where Thi and Tci are the inlet temperatures of the hot 
and cold fluids, respectively. 

Defining non-dimensional length and time 
coordinates 

YD =y/L and t D = 2tiP 
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the governing equations reduce to 

OH _ ~(Tm _ Tg) 
@D 
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(3a) 

Th i 
hA L f!  dTg 
Gg Thi Tci Cp(Tg) 

Tc i 

3Tm 
Ot D - HCTg Tm) (3b) 

hAL 
GgCp,hm 

- Ahm (6) 

The dinlensionless parameters, Sl and rI. are defined 
earlier and the variable H, which has the dimension of 
tCl)lperattirc, is definc-d as LeCp. Equatioils (3a) rind 
(3b) tire identical to those in constalll specific heat 
problems except that the variable H substitutes tor T<; 
in Equation (3a). The boundary tuld reversal condi- 
lions now reduce to 

Tg(y D = 0, tD) = Thi for 0 < t D ~< 1 

Tg(YD = 1, tD) = Tci for 1 < t D ~< 2 (4) 

Tm(VD, t D + 2) = Tm(V D, tD) for 0 <YD ~< 1 

Harmonic mean reduced length 

In the p,evious section, the governing equations have 
been developed in terms of a characteristic reduced 
length, A. defined on the basis of a characteristic 
specific heal .Cp. For nlaxin'lum convenience, S, should 
be chosen ua such a way that the effectiveness 
computed on the basis of a constant specific heat. (~p, 
is close to that by exact calculation. 

The reduced length for an arbitrary differential 
clement of the regenerator is given as 

hAdy  
d A -  GgCp 

('p.l,m is the harmonic illean specific heat of the lluid 
over the lcmpcrature range Tui- fl~i and is defined as 

-1 1 t Thi dTg 
Cp'hm = Thi - Tci Cp(Tg) (7) 

Tci 

Thus, with the assumption of a linear temperature 
profile the equivalent reduced length of the regenerator 
is equal to its harmonic mean reduced length. This 
assumption is never strictly valid because (a) a 
temperature-dependent specilic heat prechides tt linear 
temperature profile: and (b) tit finite effectiveness the 
ave,age end temperatures will not bc equal to Thi and 
T<. 

Although Ahm will not give the true effectiveness 
of a regenerator, it is still the best initial estimate and 
will be used throttghoul this Paper to characterize a 
regenerator. 

Numerical  solution 

Numerical scheme 
By replacing the characteristic reduced length, ~,, by 
the harmonic mean reduced length, Ahm. the governing 
equations can be 'arittcn as 

3H 
- Ahm(T m - Tg) (8a) 

~}YD 

till d 

This expression may be integrated over the length of 
the regenerator to give the total equivalent reduced 
length. 

L 
Ae q = f h A dy (S) 

GgCp 
o 

In the intcgrand in Equation (5) the variable ('p is a 
function of temperature Tg and. hence, of position y 
and time t. Since thc exact tcmperature profile cannot 
bc known, a linear temperature profile with tempcra- 
lures equal to Thi and Tci tit the ends may be taken as 
lhe first approxinlation. Then, 

dTg Th i - Tc i 
dy L 

3Tm 
8t D - H(Tg - Tin) (8b) 

The pair of Equations (Sa) and (8b) need to be 
expressed in a suitable numerical scheme for computer 
solution. We lollow the trapezoidal metho& to express 
the partial differential equations in finite difference 
form. 

Referring to the grid array shown in Figure 1, the 
following rehttions may be written 

H(i+I if+l) = H(i,/+1) + 

A>'D { O H 2  ~ ( i+1, ]+1)+ ~OH (i,/+1)} (9a) 

Substituting in Equation (5) 

h A  f Tci [dTg ~-1 dTg 
Aeq - Gg t d ~ - ]  Cp(Tg) 

Thi 

Tm(i+l ,/+1) = Tm(i+l ,]) + 

AtD [ ~)Tm 3Tin } 
2 [~t  D (i+l']+l)+ ~-TD-D (i+l'])(9b) 
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Grid array for numerical solution 

Similarly, H(Tg). which is equal to E(T~/Cp h .... can be 
expressed in terms of the integer part of temperature Tg 
as 

Cp(Og) + Cp(Og + 1) 
H(Tg) = H(®g) + 2 Cp,hm (Tg - ®g) (12) 

By defining a quantity R(Og) as 

R(Og(i, 1)) = [Cp(Og(i, 1)) + Cp(Og(i,/')+l)]/2Cp,hm (13) 

Equation (12) can be written as 

H(i,]) =H(Og(i,j)) + R(Og(i,j)) [Tg(i,j) - ®g(i, 1)] (14) 

On 
Equations (8) and (9) 

H(i+1,1+1) -H(i ,  1+1) = ~ { Tm (i+1 if+l)  + Tin(i, 1+1) 

- Tg(/+l,/+l) -- Tg(i,]+l)} 

and 

Tm (i+1 ,/'+1) - Tm (i+1,1) = [3{Tg (/+1,1+1) + Tg(i+1,1) 

- Tm( i+1 ,1+1)  -- Tm( i+1 ,1 ) }  

where 

l~y D 
Ot - 

2 

eliminating the partial derivatives between 

At D 
- - -  A l ~ a n d  3 = T II 

(10a)  

(lOb) 

where (H(ij) is the same as H(T~a~j)). By using 
Equation (14) and the parameters /3. C and K defined 
in the Appendix, Equation (10) may be expressed in 
the form 

Tg(i+1,1+1) = K 1 Tg(i, ] +1) + K 2 Tm (i, 1 +1 ) + Ka Tg(i+1,1) 

+ K4 Tm (i+1, j) + K s (15a) 

and 

Tm(i+1,1+1) = B 1 Tm(i+l , j )  +B2 { Tg(i+1,1+1) 

+ Tg(i+l, 1) } (15b) 

Equations (15a) and (15b) are valid for all grid points 
except the first column and the first row (Figure 1) in 
each half cycle, i.e. i = I orj--- 1. 

The initial boundary conditions are obtained 
partly from Equations (4) and partly by application of 
Equations (10 and (14). 

Equations (10a) and (10b) are the basic finite 
difference equations to be solved. This involves the 
determination of H(£ j) from the corresponding Tg(L j) 
and vice versa at every point. These interpolations 
within the innermost loop of the computer program 
require excessive computer time. To achieve quick 
interpolation, the following technique is adopted. 

The values of specific heat, Cp, are tabulated in 
computer memory at every integer value of tempera- 
ture. Then, one can read the specific heat, Cp, at any 
integral temperature, ® as the ®th element of this array. 
The value of Cp at any fractional temperature may be 
calculated by linear interpolation between the ~'o 
neighbouring integral temperatures. From the basic 
relations between enthalpy, E, temperature, Tg, and 
specific heat, Cp, one can write 

Tg / -  

E(Yg) = E(Og) + J Cp(Yg)  dTg 
®g 

where ®~ is the integer part of the temperature Tg. 
Since tee interval Tg - -  ®g < 1 K. one can 
approximate Cp(Tg) by a mean value over the interval 
Og and ®g + 1, and write 

Cp(Og) + Cp(Og + i )  
E(Tg) = E(Og) + 2 (Tg - Og) (1 1) 

Boundary relations (i = 1). 

Tg(1,1) = Thi; 1 < 1  <N+I  during hot blow period 

Tg(1,1) = Tci; 1 <1 <N+I  during the cold blow 
period 

Tm(1 ,i+1) =B1 Tin(1,1) +B2 { Tg(1,1+1) + Tg(1,1)} 

where N is the number of grid 
distance and time coordinates. 

(16a) 

(16b) 

(17) 

divisions in both 

Initial and reversal relations (j = I ). 

T m (i, 1) = T m (N+2-i, N+I ) of previous half cycle. 

1 < ~ i < ~ N + l  ( l S )  

Tg(i+l, 1)=A1 Tg(i, 1)+A 2 { Tm(i+l, 1) 

+ Tin(i, 1) } +A3 (19) 

The equations derived above for the case of 
temperature-dependent specific heat are equally 
applicable to the constant specific heat problem. In the 
latter case the parameter. R is set equal to unity. The 
resulting equations are identical to those derived by 
WillmotP. 
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Solution procedure 

1"o start the solution process, an initial matrix 
temperature profile has to be assumed. In our case, this 
profile is provided by the solution of  the constant 
specific heat problem for the same value of  Ahm and 
I1. The initial matrix temperature profile for the 
constant specific heat problem, on the other hand, is 
chosen by the following method. 

An initial estimate of  the overall efficiency of  the 
regenerator is made from Tiplefs  lbrmula 5 

) Ahm ( H 
eT = H tanh Ah m + 2 

The matrix temperature profile at the start of  the hot 
blow period (which is the same as that at the end of  
the cold blow period) is assumed 6 to be a straight line 
between the end temperatures, T h i -  1.25(1 --  e-r) 
( T h i -  Tci ) and Tci q- .25 (1 -- 8T) (Th i -  Tci) 

The matrix temperature profile for./ = 1 being known, 
the gas temperature profile is computed using Equation 
(19). Now Equation (15) and boundary  conditions (16) 
and (17) are used to compute  the entire grid array for 
the hot blow period. On completion of  the hot blow 
periotk the flow reverses. The initial matrix temperature 
profile is determined by using Equation (18) and the 
entire grid array is computed in the same way as for 
the hot blow period. The whole process is repeated till 
a steady cyclic condition is established. 

In the case of  temperature dependent specilic 
heal  equal division of  the geometrical length does not 
result in equal division of the reduced length. 
Assuming the temperature profile of  the constant 
specific heat problem, the reduced length at the ith grid 
location is computed as 

U 1 
1 1 ~ '  'I':v+~,i ~- 

1=2 

N+I,N+I 

't ) 24 ~72~N+I'N+l + A2~PN+I'I 

7!2o ( v ~,N+, u+, -- a~ %v+,,,)} (22) 

where q5 refers to the variables E or Tg, A and ~' refer 
to forward and backward differences, respectively. The 
effectiveness is computed separately for hot and cold 
blow periods 

Ehi - Eho Eco - Eci 

eE, h - Eh i _ Ec i and eE, c - Eh i _ Ec i 

Two types of  convergence criteria have been used: 
(a) Energy  ba lam'e  criterion 7 - the net energy gain of  the 
regenerator over one complete cycle has to be zero, i.e. 
e,~-.h = e~_.c. Hence, I I - e~.h/e~:.c 1--< 8, is used as a 
criterion of  convergence, (b) steady stale criterion - to 
insure that steady cyclic conditions are established, the 
condition 

2 'Y y - t  

is used as a convergence criterion. The subscript./' refers 
to the.//h cycle. 

Criterion (b) can be alternatively expressed in 
terms of the average exit temperatures as 

I(~hok-  ( ~ , . o ) : - ,  I < 8~ 

and 

Ahm Cp'hm (21) 
A(i) = N Cp(Og(k, 1)) 

k=2 

The temperature at At/) is again determined from the 
constant specific heat results and this is taken as the 
starting temperature. T m (i. 1), at the grid point (i, I). 
The above procedure considerably reduces the 
iterations necessary for convergence and results in 
saving of  computer  time. 

The initial matrix temperature profile being 
known, the other grid points are computed by using 
Equations (15)-(17). The process is repeated until 
certain convergence criteria are satisfied. 

Convergence criteria and effectiveness 

Following Wil lmot : ,  the mean exit temperature/ 
enthalpy of  the gas stream over a hall" cycle is 
calculated using the Gregory formula as 

I&g~o): - (Tgco ~:-, I < a, 

In this Paper, 8~ and 83 have b e e n  taken as 0.0001 and 
O.Ot)l K. respectively. 

The number  of  grid divisions along the length 
coordinate and that in time coordinate over a half  
cycle is taken to be the salne in this Paper. 
Consequently, the truncation error associated with each 
grid point is 8 0[(A)'D)3]. The additional error 
introduced by discretization of  specific heat data is not 
significant. Initially. a coarse grid is adopted and the 
equations are solved until the convergence criteria are 
satisfied. The resulting matrix temperature profile 
serves as the initial condition for the next grid risc, 
which is taken as half  the previous one. The new grid 
points are filled by linear interpolation between 
neighbot.ring points. The equations are solved and the 
efficiency determined lbr at legist three grid sizes, the 
differencc of  the efficiencies computed with the two 
finest grids being < 0.001. The results with the three 
finest grid sizes are extrapolated to zero grid size by 
the relation 3 
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N, -N~ N= -N, N3 -X, 
N3 ca+ N1 < + ~ e =  

¢ = (23)  
N1 " N 2  N2 -Na Na - N, - - +  + - -  

Na N1 N2 

where e~, e2, e3 are the efliciencies corresponding to the 
number of grid divisions N~, N2, and N3. 

Results 
The numerical scheme was programmed into a 
Burroughs B6700 computer and the efficiencies 
computed for selected values of temperature range, 
pressure, characteristic reduced length, A, and reduced 
period` I1. The detailed computer program has been 
given elsewhere ~. The specific heat data on normal 
hydrogen and parahydrogen have been taken from 
Reference 9 and are shown in Figures 2 and 3, Five 
combinations of working fluid, temperature range and 
pressure were selected. They have been given in Table 1. 

i ,v- 
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e~ 

I 0 0 [ _ _  I I I I I I I I I I I.__] 

80 
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20 

10 0 . 1 M P o  _~ 
8 T w o  p h a s e  

- boundary 
6 l I I I I I I J  I I I 
20 50 40 60 80 100 200 400 

Tempera ture  (K) 

Figure 2 Specific heat, C~ of normal hydrogen at constant 
pressure 9 

T a b l e  1 Combinations of fluid parameters used in computation 

Working fluid Temperature Pressure Computed 
range (MPa) Cp, hm 
(K) (KJ kg- K -1) 

I Parahyd rogen 21-77 0.1 10.85 
II Parahydrogen 28-77 0.5 11.78 
III Parahydrogen 21-77  2.0 14.93 
IV Normal hydrogen 77 -300  0.1 12.92 
V Normal hydrogen 77 -300  2.0 13.20 

Effectiveness at Ahm = 10, 20, 50 100 and 200, and 
l]/Ahm = 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 at each of the five 
combinations of Table 1 are presented in Table 2. 

It may be observed from Table 2 that in four out 
of the five fluid flow parameter combinations the 
variable specific heat results are close to those with 
constant specific heat. The results, however, are quite 
different in the case of combination III: parahydrogen 
at 2 MPa and between 21 and 77 K This case has been 

Table 2 Computed effectiveness (%) shown against Ahm, [[  and fluid flow parameters 

Ahm [], /Ahm Constant  Cp I 

Fluid flow parameter combination (Table I) 

II III IV V 

10 0.1 83.22 83,34 83.37 75.52 82.91 83.03 
0.2 82.89 83,02 83.04 74.83 82.56 82.69 
0.4 81.70 81,85 81.88 72.40 81.31 81.46 
0.6 79.84 80,05 80.10 69.06 79.35 79.54 
0.8 77.24 77,52 77.62 65.23 76.57 76.82 
1.0 73.76 74,13 74.28 61.13 72.91 73.22 

20 0.1 90.78 90.82 90.79 85.70 90.62 90.68 
0.2 90.44 90.48 90.44 84.68 90.27 90.34 
0.4 89.35 89.39 89.33 81.30 89.13 89.22 
0.6 87.67 87.75 87.69 76.82 87.33 87.47 
0.8 85.10 85,29 85.27 71.93 84.53 84.75 
1.0 81.14 81.49 81.55 66.81 80.22 80.56 

50 0.1 96.04 96.04 96.00 93.64 95.97 96.00 
0.2 95.79 95.79 95.73 92.58 95.73 95.76 
0.4 95.07 95.05 94.94 88.60 94.99 95.02 
0.6 93.91 93.89 93.73 83.08 93.76 93.83 
0.8 91.93 91.98 91.80 77.37 91 . 51 91.68 
1.0 87.93 88.25 88.15 71.48 86,85 87.24 

100 0.1 97.95 97.95 97.92 96.68 97.92 97.93 
0.2 97.79 97.78 97.74 95.87 97.76 97.78 
0.4 97.33 97.30 97.20 91.62 97.30 97.32 
0.6 96.56 96.51 96.32 85.45 96.49 96.52 
0.8 95.13 95.10 94.83 79.54 94.83 94.96 
1.0 91.41 91.80 91.41 73.54 90.16 90.61 

200 0.1 98.95 98.94 98.92 98.29 98.94 98.94 
0.2 98.86 98.96 98.83 97.73 98.84 98.85 
0.4 98.61 98.58 98.50 93.23 98.60 98.60 
0.6 98.13 98.07 97.90 86.79 98.10 98.12 
0.8 97.21 97.14 96.79 80.91 96.94 97.11 
1.0 93.91 94.16 93.66 75.12 92.41 92.94 
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i l lustrated in Fizurv 4. In cryogenic practice, most 
regenerators  opera te  with high efficiency. Hence, il is 
more appropr ia t e  to compare  the inefl'iciency. The 
marginal  change  in inefficiency (I - e#:) between 
var iable  and constant  specific heat ca lcula t ions  have 
bccn shown  for  f l u i d  l l o w  pa ramete rs  1II and V in 
Figures 5 and 6. respectively. It may be obser~,ed thai 
the difference between the two calcula t ions  is very high 
in the case of  combina t ion  III, but is s ignif icant  for 
combina t ion  V only tit high Ahm and rl. F~q~.lt/.t,s ,.9 ~,lnd 
3 show that in the case of  combina t ion  III, the specific 
heat varies by a factor of  nine over the tempera ture  
range of  intercsk but in all o ther  cases it is l imited to a 
factor of  two. Hence, we may conclude  that if the 
specific heat var ia t ion x~ithin the tempera ture  range of  
interest is lira]led to a factor of two, a conslant  specific 
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hcat ca lcula t ion w.ith A = Ahm will give accurate 
results. But at highcr  var ia t ion or at high values of  Ahm 
O f  ~I.  a l l  cX~.lcl computa t ion  is necessary. 

Although thc overall  elTcctiveness is correctly 
predicted by thc cons tant  specific heat model  (with A 
= Ahm), in most cases the actual  temperature  profile in 
the regenerator  shows signif icant  variation. This has 
bccn i lhistrated in F(gures 7 and a lor two specific 
examples.  The deviat ion of  the tempera ture  profile 
from that with constant  specific heat is high lbr the 
casc w'here thc specific heat itself varies over a v, i de  
range. 
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Figure 7 Matrix and gas exit temperature profiles under steady 
cyclic conditions. Ahm = 20, H = 4. A: Constant specific heat; 
B: Normal hydrogen, 3 0 0 - 7 7  K, 2.0 MPa; C: Parahydrogen, 
77 -28  K, 0.5 MPa; D: Parahydrogen, 77-21 K, 2.0 MPa; 
Matrix temperature v e r s u s  dimensionless length at the end of 
hot and cold periods; ...... : Gas exit temperature v e r s u s  dimen- 
sionless t ime 
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Figure 8 Matrix and gas exit temperature profiles under steady 
cyclic conditions. Ahm = 100, r[  = 40. A, Constant specific heat; 
13, normal hydrogen, 300 -77  K, 2.0 MPa; C, parahydrogen, 77 -28  K, 
0 . 5  MPA; D, parahydrogen, 77-21 K, 2.0 MPA. , Matrix 
temperature v e r s u s  dimensionless length at the end of hot and cold 
blow periods; . . . . . . .  , gas exit temperature v e r s u s  dimensionless 
time 
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A p p e n d i x  
Definition of coefficients used in the tinite difference 
equations 

R(Og(i,/')) - ot 
A1 = R ( 0 g ( i + l  , j ) )  + ot 

o~ 
A2 = R(Og(i+l,j)) + 

{ H(Og(i, ])) - Og (i, j )"  R(Og (i, ])) - H(Og (i+1,/))  
A3 = 

R(Og(i+l , j ) )  + c~ 

Og(i+l , j ) -  R(Og(i+l ,j))} 

R(Og(i+l ,/')) + o~ 

B 1 -  1+/3 

B 2 -  1 + 3  

R(Og(i,/+1)) - o~ 
C1 = R(Og(i+l,]+l )) + ~ 

C2 R(Og(i+l ,}+1)) + ot 

C 3 = 
{H(Og(~/+l)) - Og(i, /+1)" R(®g(i,/+1)) 

R(Og(i+l , j+l  )) + ol 

H(Og(i+l ,/'+1)) + Og(i+l , /+1) • R(Og(i+l ,/'+1) } 

C1 
K t  - 

1 - C2B 2 

G 
K 2  - 1 - C 2 B  2 

C 2 B 2  

K3 - 1 - C 2 B 2  

C 2 B 1  

K 4  - 1 - C u B 2  

C3 

Ks - 1 - C 2 B  2 

R(Og(i+l ,/'+1)) + ot 
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