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This paper presents a second law of thermodynamics analysis technique for regenerators 
in single blow operation. Unlike earlier analyses, this technique accounts for the gas and 
matrix temperature variation along the temporal and spatial coordinates. The results of 
this study indicate that: 1, well defined optima exist with regard to charging time and 
number of heat transfer units for maximizing the useful work stored; and 2, whereas in 
earlier analyses a finite optimum charging time results as Ntu approaches infinity, in the 
present analysis a square wave of specific irreversibility propagates in the medium. To 
obtain an appropriate analytical expression, this analysis is approximated to suit a low 
Ntu regenerator. Nomenclature 
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Heat transfer area of matrixm 2) 
Specific heat of fluid (J kg -1 K -1) 
Specific heat of solid/matrix (J kg -~ K -1) 
Exergy content of fluid (= Wmin) (J) 
Friction factor 

Special functions given in Appendix 

Mass velocity of fluid (kg m -2 s -l) 
Heat transfer coefficient (W m -2 K -l) 
Irreversibility (J) 
Irreversibility rate (W) 
Length of solid/matrix bed (m) 
Mass flow rate of fluid (kg s -l) 
Mass of fluid contained in bed (kg) 
Total mass of solid (kg) 
Dimensionless friction coefficient 
{ = [ G/(2PPo) 1/21 [ (R/Cp)(flNst) ] 1/2 } 
Stanton number 
Number of transfer units [ =hA/(rhCp) ] 
Fluid pressure drop (N m -2) 
Ambient pressure (N m -2) 
Ideal gas constant (J kg-I K-l)  
Specific entropy (J kg -1 K -a) 
Entropy generation (J K -I) 
Entropy generation rate (W K -a) 
Time coordinate (s) 
Dimensionless time [ =mCpt/(M, Cs) ] 
Temperature (K) 
Ambient temperature (K) 
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Unit step function 
Dimensionless fluid velocity 
[ =MsCs'7/(mfCo)] 
Distance coordinate (m) 

Greek 

¢ 

letters 

Ratio of specific heats for fluid 
hAt/(M, Cs) (=Ntu" O) 
Dimensionless optimum storage capacity 
[ =(Tm,opt- To)/(Tg,i- To)] 
Fluid density (kg m -3) 
hAx/(mCr, L) (=Ntu "xD) 
Dimensionless fluid inlet temperature 
[=(To - Tg,i)/To] 
Dimensionless charging time 
[ = t D -  (Xo/VD) = to, neglecting fluid hold-up] 

Subscripts 

a Average 
cv Control volume 
D Dimensionless 
g Fluid (gas) 
i Inlet 
m Solid or matrix 
o Outlet 
opt Optimum 
AP Contribution of pressure drop 
sp Specific 
sur surroundings 
AT Contribution of finite temperature difference 
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The design and operation of energy recovery systems 
require all possible sources of energy, including waste 
heat, to be efficiently and economically utilized to 
satisfy the surplus supply-demand characteristic of the 
system. Thus, the surplus in the case of a thermal system 
appears as stored heat when the supply of heat is greater 
than the demand. Of the many possible ways of storing 
heat for later use, sensible heat storage systems are 
attractive because of their relatively low cost, compact- 
ness and simplicity. In many sensible heat storage 
systems, metallic porous beds of high specific heat are 
utilized for efficient and economic energy storage. 
Regenerators are one such class of storage units which 
constitute the single most important component in many 
thermal systems, including cryogenic systems. In 
cryogenic refrigerators, the regenerator is at the heart of 
the engine, which may be based on Stirling, 
Gifford-McMahon or similar cycles. Apart from this, 
thermal regnerators are also used in blast furnaces, gas 
turbines, nuclear reactors and solar energy systems, to 
cite but a few examples. 

In classical methods of utilizing the first law of ther- 
modynamics, the storage systems are assessed in terms 
of the heat storage capability of the units. This takes no 
account of the wastage of useful energy during the stor- 
ing process. Consequently, this approach yields a 
substantive design for the storage units, but not 
necessarily the thermodynamically optimum one. In 
most convective heat transfer processes, the unavailable 
thermodynamic energy (or anergy) is characterized by 
two factors: fluid friction and heat transfer across a 
finite temperature difference. These two interrelated 
phenomena are the manifestations of thermodynamic 
irreversibility, and investigation of a process from this 
single standpoint is based on the second law of ther- 
modynamics in addition to the first. This analysis has led 
to the maximum storage of useful work by keeping the 
entropy generation rate at a minimum. 

Several authors 1-3 have investigated fluid flow and 
heat transfer by considering minimum entropy genera- 
tion to yield optimum design parameters. In their 
pioneering studies, Bejan 4"5 and Sahoo 6 applied entropy 
generation techniques to the analysis of sensible heat 
storage systems. In all these analyses, the authors 
assumed that there was no spatial temperature variation 
along the matrix. Such an analysis is termed lumped 
parameter modelling. In practice, the matrix is con- 
sidered to be a distributed model where there is a 
temperature variation along the temporal and spatial 
coordinates in the matrix. Thus, the purpose of this 
paper is to investigate refrigeration storage units using 
a distributed matrix model and to develop optimum 
design parameters for minimum entropy production due 
to heat transfer across a finite temperature difference in 
the presence of fluid friction. In cryogenic and refrigera- 
tion applications, since the penalty in terms of cost for 
wastage of useful energy is large, such analysis can be 
very useful. 

Temperature response of storage units 

Typical operation of a refrigeration storage system is 
shown schematically in Figure 1. The system consists of 
a matrix bed of zero and infinite thermal conductivity 
along the bed axis and perpendicular to it, respectively. 
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Figure 1 Refrigeration storage system 

A stream of cold gas is blown from one side of the bed 
with the bed at ambient temperature initially. The gas is 
finally discharged into the environment at the other end 
of the matrix bed. Gradually, the matrix and exhaust gas 
temperatures decrease, approaching the cold gas inlet 
temperature. As the matrix thermal conductivity along 
the fluid flow direction is zero, the matrix temperature 
is a function of both distance and time, while the gas 
outlet temperature at the other end of the matrix is a 
function of time only. 

Using the first law of thermodynamics, the energy 
balance applied to the system gives the following dif- 
ferential equations (in dimensionless parameters) 

OTg _ Ntu(Tm _ Tg) (1) 
axo 

arm 
a o  - Ntu(Tg - Tin) (2) 

In most practical situations, the fluid hold-up given by 
XD/VD can be neglected in comparison with the blow 
period, tD (Reference 7). Hence the dimensionless 
charging time, 0, reduces to to. The boundary condi- 
tions for Equations (1) and (2) are 

T g ( X  D ~-  0,  0) = Tg,i 

T m ( X D ,  0 ~--- 0 )  -~- T o 
(3) 

The solution of Equations (1) and (2), along with its 
boundary conditions expressed by Equation (3), is given 
explicitly by Montakhab 8. However the solution can 
also be presented by special functions 9 which are of 
interest in the present investigation. These are 

Tg(17' ~) - Tg ' i =  Go(17, ~) (4) 
L -  r,,, 

Tm(~' /~) - -  Tg'i= 1 - Go(~j, r/) (5) 
:To- r,,, 

where 

7 /=Ntu '0  and ~ = N t u ' X o  (6) 

A short list of the properties of these special functions 9 
is given as an appendix. 
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Entropy generation 

The rate of irreversibility can be expressed in terms of 
entropy generation rate by 

o dSsu,] [= TOSgen= TO[dScv + 
L dt dt J 

(7) 

For a steady state and steady flow process involving a 
single stream, the above equation can be written as 

[dSc, ] 
1 = To L dt + m(So - si) (8) 

The refrigeration storage process, as shown 
schematically in Figure 1, is associated with three 
sources of irreversibility. Of these three, two are caused 
by heat transfer across a finite temperature difference: 1, 
heat transfer occurs between the cold gas stream and the 
matrix; and 2, the cold gas stream exhausted from the 
matrix is heated due to irreversible mixing with ambient 
air. The third source of irreversibility is the friction due 
to the flow of fluid through the matrix. Hence the total 
irreversibility rate due to these three factors can be 
expressed as 

,=To r d  (MsCs I[I'° Tmd~) +mCpln To 
kdt ~ In Too T,,i 

+ rhcp T"° - T° + rnR ln(l + (9) 

If the axial temperature variation of the matrix over its 
length is not too large then the first term under the 
integral sign can be approximated as 

fo [ rm,dN, ~" Tm d~ = In (10) 
In To ToJ tu 

where Tin, a is the average matrix temperature over the 
bed length. The bed length is designated non- 
dimensionally as Nt,. Using the temperature profile 
Equation (5) the resultant temperature ratio is given by 

Tm., __ 1 ~N,. Tm d~ = 1 - 7- + zF~(~, N,~) (11) 
To Ntu ,j0 To N~o 

Also using these relations the irreversibility rate given 
by Equation (9) can be rewritten as 

rFl(r/. N.,) 

.o . .o 'O+m..nO+")l 
+ mCp In Ts,i + n~Cp ' To 

(12) 

In the operation of a regenerator the frictional 
pressure drop, AP, over the length of the matrix bed is 
usually small compared to the ambient pressure, Po, so 
that the last term of Equation (12) can be approximated 
by 

A p )  Z~ 
In 1 + = (13) 

Po Po 

Again, the frictional pressure drop for the matrix can be 
expressed l0 as 

Po = " Nt,, (14) 

where f, Nst and G are, respectively, the friction factor, 
Stanton number and mass velocity for the gas side. Since 

I= l d t -  rnCo l dO 

irreversibility, I, can be estimated by the integration of 
Equation (12), using the temperature profile Equations 
(4) and (5). The resultant equations express the energy 
destroyed during the refrigeration storage process due to 
the finite temperature difference and pressure drop. 
They are given by 

Iar=M~C~To In 1 - ' r + ' r F l ~ t t u  +7" 

TFI(rI' Ntu) 7"0 -- 0In(1 -- 7")'/ (15) 
N,° ) 

and 

lap = M'CsT°O Nst" 2p-Po "Nt~ (16) 

while 

I= l, xr + lae 

where 7- is 
expressed as 

(17) 

dimensionless temperature variable 

T---~ TO -- zgi (18) 
To 

The exergy content of the cold gas at low temperature, 
Tg,~, is equal to the minimum work, Wmin, required for 
a Carnot refrigerator to produce it from the ambient 
temperature, To. The net exergy needed is the algebraic 
sum of exergies associated with the flowing mass and 
resident mass in the regenerator. The derivation is given 
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by 

( x 
E = - mCpt  - ~, mf  To [7" + ln(1 - r)] 

/ m C p t  _ xmfCp  "~To[ r + In(1 - r)] 
= -M~C~MsC~ L M s C , ' U  

= --M~Cs(to--XD}To[r+/ \ In (1 - - r ) ]  
\ VD / 

= -M~CsOTo  [r  + In(1 - r)] (19) 

However,  with negligible fluid residence, charging 
time, 0, can be equated to to. An informative expres- 
sion can be obtained by considering the ratio of  the 
exergy destroyed to the total exergy content of  the cold 
gas. The resultant dimensionless exergy is designated 
specific irreversibility, I,p. This quantity is the same as 
the number of  irreversibility units introduced by 
Bejan 5. The specific irreversibility may be written ex- 
plicitly from Equations (15), (16), (17) and (19) as 

Wmi. 
- l~p = (l,p),T + (Lp)~. (20) 

(Isp)ar = 1 - { [r  - rFl(rl ,  Ntu)lNtu + In[1 - r 

+ rFl01, Nt, , ) lNt , ,J l[O[r  + ln(1 - r ] ]  } (21) 

(I,p)ae = - ~  " 2 7 0  N t u / [ r  + ln(1 - r)] (22) 

Equation (21) is defined for finite values of  r and Ntu. 
But the equation can be modified depending on the 
limiting values of  these variables by using the properties 
of  the special functions 9 given in the Appendix. 

Case 1: Ntu ~ oo and O < r <_ 1 

As Ntu approaches infinity the product hA must also 
approach infinity since the specific heat and mass flow 
rate (Cp and m) are always finite for the cooling gas. So 
at any cross-section of  the matrix bed, since the level of 
heat transfer is a product of hA and the temperature dif- 
ference (Tm - Tg) between the cold gas and matrix, it is 
obvious that to have a finite heat transfer value, 
(Tin-  Tg) must approach zero. In other words, the 
matrix temperature must approach the gas temperature. 
Under these circumstances the system Equations (1) and 
(2) are transformed into 

OT OT 
- ( 2 3 )  

0X D 00 

while the boundary conditions are transformed into 

T(XD, 0 = 0 )  = T o [ 

I T(XD = O, O) = Tg.i 
(24) 
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Solving Equation (23) with the boundary conditions 
described by Equation (24) by using Laplace transforms 
results in 

T(XD, 0) --  Tg,i = 1 -- u(O -- XD) (25) 
To- Tg,~ 

where u represents a unit step function. Using Equation 
(25) it can be shown from Equation (9) that 

(Isp)AT : 0 for  0 < X D 

and 

(Isp)aT = 1 for 0 _> XD 

(26) 

These expressions clearly indicate that a square wave is 
propagating with a dimensionless speed of  unity. 

Case 2: r - -  O and oo > Nt. > O 

In this case (Isp)ar can be evaluated in the limit as 
r -- 0, the result being 

[ 1 - F~01, Ntu)/Ntu]  2 
(/sp)aT = 1 -- 0 (27) 

Optimization of charging time 

The amount of  cold gas used is determined by the charg- 
ing time of the matrix. So the time 0 plays a major role 
in determining the loss of  useful work due to heat 
transfer across a finite temperature difference. Examina- 
tion of  Equations (21) and (27) shows that the specific 
irreversibility, (Isp)ar, is unity at the two extreme values 
of 0, that is in the 0 -- 0 and 0 -- oo limits. Hence there 
exists an optimum value of 0 when specific irrever- 
sibility reaches its minimum. Specific irreversibility due 
to temperature difference, (Isp)aT, is plotted in Figures  
2 - 4  as a function of  0 for discrete values of r and Ntu. 
The total specific irreversibility is the summation of 
individual specific irreversibilities due to the tempera- 
ture and pressure drop. Since the pressure difference 
contribution to the specific irreversibility is independent 
of charging time, the above figures portray the optimum 
charging time for systems in the presence of  a pressure 
difference also. However,  it is evident from Equation 
(21) that as r - - 1  (that is Tg.i--0 K), (Isp)aT - - 1 ,  
which can be attributed to the infinite exergy content of 
the inlet cold gas if its temperature approaches absolute 
zero in the limit, while the stored exergy in the matrix 
is a finite quantity. 

The locus of the optimum charging time, 0opt, can  be 
estimated explicitly by minimizing the specific irrever- 
sibility given by Equation (21). Basically two types of 
conditions arise for the evaluation of these minima 

r - rFl(rl ' ,  N~.) /N, .  

TO°ptG° 1 - z + TFl(rl ' ,  Ntu)/Ntu 

- [ r F , ( ~ ' ,  Nto) /N to  - r ]  

+ln[1 - r + rF~(rt', Nt,,)/Ntu] = 0 for r ~ 0 (28) 
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and 

20opt Go - [ 1 - Ft  (r/ ' ,  Ntu)/Ntu ] = 0 

where 

r/' = 0opt" Ntu and Go = Go(r/', Nt.) 
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The optimum charging time, 0opt, expressed by Equa- 
tions (28) and (29) can be calculated numerically using 
the Mueller's iteration method ~1. The results of these 
equations are shown in F i g u r e  5.  It is observed from the 
plots that the optimum charging time increases with 
increasing r, the lowest optimum charging time being in 
the z -  0 limit (that is Tg,i- To). In this case 0opt is 
finite when the temperature difference for heat transfer 
is negligibly small, i.e. the gas temperature from the 
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0 I 2 3 4 5 6 

N 
tu 

Figure 5 Opt imum charging t ime at min imum speci f ic  i r rever-  
sibi l i ty 
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source approaches the ambient temperature. The varia- 
tion of 0op t with Ntu for various values of r depicts a 
rectangular hyperbola where in the Nt,---0 limit, 
0opt - -  oo and in the Ntu - -  oo limit, 0opt -- 0. 

Optimization of number of transfer units 

The most important parameter associated with any heat 
exchanger is its Ntu value. This parameter not only 
determines the physical dimensions of a heat exchanger 
but it is also a strong function of heat exchanger effec- 
tiveness. In the expression described by Equation (21), 
the dissipation of useful work due to heat transfer across 
a finite temperature difference always decreases with 
increase in Nt~. At the same time dissipation of useful 
work due to drop in pressure increases with Nt,, as 
described by Equation (22). 

Thus the combination of Equations (21) and (22) 
represents the total irreversibility of the system. To 
optimize Nt, the total irreversibility is differentiated 
with respect to Ntu at the corresponding optimum charg- 
ing time. The result can be expressed as 

rFl(~, Ntu)/Ntu - r 

[1 - r + l rF , (n ,  Nt,.,)/N,u]e 

I _r [Fo(r/, N,.) -OGoO l, N,u)] 

rF'(~--i Nt"!~ (31) 
) 

where 

R G 2 
(32) 

Equation (31) can be solved numerically for the 
optimum number of transfer units. In the solution pro- 
cedure, Equation (28) is first solved to obtain the 

Optimization of regenerators: S.K. Das and R.K. Sahoo 

optimum charging time at the corresponding Nt, for a 
discrete value of r. If this pair of 0op t and Ntu values 
satisfy Equation (31) for a discrete value of Ne, the 
resultant value of Nt, is the optimum Ntu. This result is 
plotted in Figure 6, which shows that the optimum 
number of transfer units decreases as the mass velocity 
increases for the same value of z. So, for a regenerator 
bed the mass velocity is fixed to achieve most efficient 
exergy storage. 

Optimization of storage capacity 

If the cold recovery process is continued up to a time 
equal to the optimum charging time of the system then 
the matrix temperature is cooled to an optimum tempera- 
ture, Tm,opt- This corresponds to the optimum exergy 
stored in the refrigeration unit. However, if cooling of 
the matrix is prolonged to give the gas inlet temperature 
Tg,i, maximum energy is stored in the matrix at the 
expense of increased exergy waste from the cold source. 
Thus the fraction ~b, which determines optimum 
refrigeration corresponding to the maximum storage of 
useful work, is shown in Figure 7. This figure 
represents the values of no risk storage of useful work 
in a regenerator. Deviation from this quantity of stored 
work runs the risk of destroying useful work during the 
storage process. 

Concluding remarks 

By analysing the irreversibility associated with sensible 
heat in the refrigeration storage process, it is possible to 
show important trade-offs in optimizing regenerators for 
single blow operations. These trade-offs are similar to 
the earlier analyses posed by Bejan 5 and Krane 3. 
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Unlike the earlier analyses which were applied to a huge 
liquid pool, the present model has a more practical 
application in cryogenic industry. Due to the involve- 
ment of  special functions and its mathematical complex- 
ity, the model is approximated by an average 
temperature [given by Equation (11)] to suit low Ntu 
regenerators. Though this is one of  the limitations of  the 
present analysis, it greatly simplifies the computation 
involved and yields a semi-analytical solution which is 
closer to the real situation than solutions given by 
existing models 3'5'6. 

The model can be extended to a bed which does not 
have a uniform initial bed temperature. In this case, the 
initial temperature function may be expanded as a 
polynomial with regard to the distance coordinate. The 
first term of  the polynomial is a constant and its 
temperature response is given by Equations (4) and (5). 
The response due to the successive terms of the poly- 
nomial is evaluated by the integration of  the preceding 
terms. For a linear system the integral of  the response 
is the response for the integral of  the subsequent term of  
the polynomial. Hence the resultant temperature 
response can be utilized to compute the optimum 
parameters. 

Considering the irreversibility analysis again shows 
that the real purpose of a thermal energy storage system 
is not to store energy, but to store thermodynamic 
availability or exergy. Designing a regenerator for 
single blow operations based on optimum charging time, 
Oopt, and optimum transfer units, Ntu,opt , maximizes the 
fraction of availability or exergy or useful work stored. 

It is important to note that a wide variety of  other con- 
siderations exists for implementation of  this analysis. 
These considerations are mainly economic and practical 
in nature. The present work, however, addresses only 
the thermodynamic aspect of  designing storage systems, 
ignoring the other factors. 
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Appendix 

The function Go is known as the Anzel ius-Schumann 
function 9 and is defined as 

oo yr+l  ~ X p 
G°(x' Y) =e-'X+Y) E ( r +  ])! p! 

r=0 p=O 

Similar functions, G l and FI,  appearing in the text are 
given by 

oo yr+2 ~ x p 
G,(x,  y)  = e -(x+y) ~,~ ( r~-23  ! ( r - p  + 1) P[ 

r=O p=O 

and 

F,(x, y)  = Go(x, y )  + G~(x, y )  

The partial derivatives of the function Ft with respect 
to its arguments are given by 

OFI(x, Y) 

Ox 
- -  - Go(x, y )  

OFt(x, Y) 

Oy 
- -  - 1 - Go(Y, x) 

and one of  the integrations may be given as 

A 

'o Go(x, y )dx  = - - F l ( X  , y)  + F~(O, y )  
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