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The two-dimensional quasi-steady conduction equation governing conduction cont
rewetting of an infinite slab, with one side flooded and the other side subjected
constant heat flux, has been solved by Wiener-Hopf technique. The solution yield
quench front temperature as a function of various model parameters such as P
number, Biot number and dimensionless heat flux. Also, the critical (dryout) heat fl
obtained by setting the Peclet number equal to zero, which gives the minimum hea
required to prevent the hot surface being rewetted.@DOI: 10.1115/1.1484111#
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1 Introduction
The process of quenching of hot surfaces is of practical imp

tance in nuclear and metallurgical industries. For instance, in
event of a postulated loss-of-coolant accident~LOCA! in water
cooled reactors, the clad surface of the fuel elements may re
very high temperature because the stored energy in the fuel ca
be removed adequately by the surrounding steam. In orde
bring the reactor to a cooled shutdown condition, an emerge
core cooling system is activated to reflood the core. The t
delay in re-establishing the effective cooling may result in a cl
ding temperature rise, significantly above the saturation temp
ture. If the cladding temperature rises above the rewetting t
perature, a stable vapor blanket will prevent the immediate re
to liquid-solid contact. Rewetting is the re-establishment of liqu
contact with a hot cladding surface and, thereby, bringing it to
acceptable temperature. Also, quenching phenomenon is of
siderable practical interest in many other applications such
steam generators, evaporators, cryogenic systems and metal
cal processing. The cooling process during quenching is cha
terized by the formation of a wet patch on the hot surface, wh
eventually develops into a steadily moving quench front. As
quench front moves along the hot surface, two regions can
identified: a dry region ahead of the quench front and a wet reg
behind the quench front. The upstream end of the solid~wet
region! is cooled by convection to the contacting liquid, whi
its downstream end~dry region! is cooled by heat transfer to
mixture of vapor and entrained liquid droplets, called precurs
cooling.

The rewetting model for a two-dimensional two-region he
transfer with a step change in heat transfer coefficient at
quench front has been solved for a single slab@1–3# or for a
composite slab@4#. In the single slab model the unwetted side
considered to be adiabatic, whereas in case of a composite s
three layer composite is considered to simulate the fuel and
cladding separated by a gas filled gap between them. The solu
method commonly employed is Wiener-Hopf technique. The tw
dimensional rewetting model for a single slab with a uniform h
flux and precursory cooling has been solved by an approxim
integral method@5#. The one-dimensional rewetting model with
uniform heat flux has been solved for a smooth plate@6# and for
both smooth and grooved plates@7#, considering the dry region to
be adiabatic.

The analysis of rewetting of a hot surface subjected to a bou
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ary heat flux and the dryout induced by the heat flux is of spec
interest while considering the decay heating of a nuclear fuel@5#
or in the design of heat pipes for thermal radiators@6,7#. Chan and
Zhang @7# observed that the existence of heat flux on the w
poses an unsteady state solution for the heat conduction equa
even after the equation is transformed to the Lagrangian coo
nate moving with the quench front. In this respect, they also c
sidered the rewetting velocity as well as the plate temperature~at
far ahead of the quench front! to be time variant. In the presen
paper, however, precursory cooling in the dry region has b
included in the boundary condition in order to consider the qua
steady state conduction equation. Further, reported literature
analytical investigations indicates that Wiener-Hopf solution
the rewetting model with a boundary heat flux does not exist
the present analysis, Wiener-Hopf technique has been emplo
because of its accuracy and computational simplicity. Besides
advantage of using the Wiener-Hopf technique may be recogn
in case of handling discontinuous boundary conditions, where
singularity due to the discontinuity can be readily resolved
decomposing an appropriate kernel function in the complex F
rier domain.

In the present study, the physical model consists of an infinit
extended vertical slab with one side flooded and the other
subjected to a uniform heat flux. The model assumes constan
different heat transfer coefficients for the wet and dry regions
the flooded side. The two-dimensional quasi-steady conduc
equation governing the conduction-controlled rewetting of the
finite slab has been solved by Wiener-Hopf technique. The pre
solution involves the exact decomposition of the kernel functi
so that the solution may be valid for all range of values of t
parameters used in the model. The solution has been comp
with other analytical solutions and depicted in the graphical for

2 Mathematical Model
The two-dimensional transient heat conduction equation for

slab is

kS ]2T

]X2 1
]2T

]Y2D5rC
]T

]t
0,X,d 0,Y,L L→` (1)

whereL is the length of the slab andd is the thickness of the slab
The density, specific heat and thermal conductivity of the s
material arer, C, andk respectively. The origin of the coordinat
frame is at left-bottom corner of the slab. To convert this transi
equation into a quasi-steady state equation, the following trans
mation is used:

x̄5X ȳ5Y2ut
8,
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whereu is the constant quench front velocity andx̄, ȳ are normal
and axial coordinates respectively~Fig. 1~a!!. Experiments have
shown that, if the slab is long enough compared to the penetra
depth to heat transfer field, the temperature distribution around
heat source/sink soon becomes independent of time. That is
observer stationed at the origin of the moving (x̄,ȳ) coordinate
system fails to notice any appreciable change in the tempera
distribution around him as the front moves on. This is identified
the apparent steady state or quasi-steady state condition. Thu
transformed heat conduction equation in a coordinate sys
moving with the quench front is

]2T

] x̄2 1
]2T

] ȳ2 1
rCu

k

]T

] ȳ
50 0, x̄,d 2`, ȳ,` (2)

The above equation is the governing partial differential equa
in quasi-steady state for the slab, in which]T/]t50 in the mov-
ing coordinate system.

In conduction-controlled rewetting analysis, it is believed th
conduction of heat along the slab from the dry region to w
region is the dominant mechanism of heat removal ahead of
quench front, which results in a lowering of the surface tempe
ture immediately downstream of the quench front and causes
quench front to progress further. Since only axial conduction
considered, the effect of coolant mass flux, coolant inlet subc
ing and its pressure gradient etc. are not accounted for explic
but implicitly in terms of wet region heat transfer coefficien
which is incorporated in the boundary condition. In the pres

Fig. 1 „a… Physical domain of infinite slab; and „b… common
strip of analyticity in the complex Fourier plane.
876 Õ Vol. 124, OCTOBER 2002
tion
the
, an

ture
as
s the
tem

ion

at
et
the
ra-
the
is
ol-
itly,
t,
nt

analysis, the heat transfer coefficienth1 is assumed to be constan
over the entire wet region. The coolant temperature is taken to
equal to its saturation temperatureTs . On the dry side of the slab
the wall is cooled by the surrounding vapor. The heat trans
coefficient accounting for both convective and radiative cool
effects on the dry side is assumed equal toh2 , a constant, which
is smaller thanh1 . The temperature of the surrounding vapor
assumed equal toTw , which can be interpreted as the initial tem
perature of the hot surface without a boundary heat flux. Thi
justified because the vapor in dry region would be superhea
due to the existence of imposed surface heat flux on the wall.
rewetting~quench front! temperature is denoted byT0 .

Following Yao @5#, it may be envisaged that the temperatu
field is sufficiently flat in the axial direction at infinity. Conse
quently, the first and second derivatives of temperature
ȳ-direction can be neglected at far upstream of the quench f
~at ȳ→2`! as well as at far downstream of the quench front~at
ȳ→1`!. The above two assumptions are adequate to presc
the temperature at infinity (ȳ→6`). The far-field boundary con-
ditions then become

T5Ts1
q

k
~d2 x̄!1

q

h1
ȳ→2`

(3)

T5Tw1
q

k
~d2 x̄!1

q

h2
ȳ→1`

The conventional rewetting models~without a boundary hea
flux! usually assume the vapor temperature in the dry region e
to its saturation temperature so that it would be used as a
temperature. In the presence of a boundary heat flux, howeve
is well justified to assume the vapor temperature equal to
initial wall temperature because the vapor would be superhe
owing to the existence of the boundary heat flux. The surf
temperature of the slab at far ahead of the quench front~at x̄
5d, ȳ→1`! can be calculated~Eq. ~3!! to be equal to (Tw
1q/h2). In situations whenT0>Tw , the temperature of dry re
gion wall T(d,ȳ) will be aboveTw and, hence, the wall will be
cooled by the vapor. On the other hand, forT0,Tw , only a finite
part of the dry region wall immediately ahead of the quench fr
will be less thanTw , whereas for the remaining part it will be
more thanTw over an infinite length. This implies that the forme
part of the dry region wall of a finite length will be heated by th
vapor while the latter part of an infinite length will be cooled b
the vapor and the overall effect is to cool the dry region wa
Thus, on the whole, in both the situations the vapor tempera
would behave as the sink temperature. Moreover, the boun
conditions in Eq.~3! suggest that precursory cooling in the d
region cannot be neglected in the case of existence of boun
heat flux on the wall. Equation~2! can be expressed in the follow
ing dimensionless form

]2u

]x2 1
]2u

]y2 1Pe
]u

]y
50 0,x,1 2`,y,` (4)

The associated boundary conditions are

]u

]x
1Q50 at x50 2`,y,`

]u

]x
1B1u50 at x51 y,0

]u

]x
1B2~u21!50 at x51 y.0

(5)

u5
Q

B1
1Q~12x! at y→2`

u511
Q

B2
1Q~12x! at y→1`

u5u0 at x51 y50
Transactions of the ASME
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The non-dimensional variables used above are

x5
x̄

d
, y5

ȳ

d
, u5

T2Ts

Tw2Ts
, B15

h1d

k
, B25

h2d

k
,

Pe5
rCud

k
, Q5

qd

k~Tw2Ts!
and u05

T02Ts

Tw2Ts
.

It may be verified that for no heat flux condition with adiaba
dry side ~by settingQ50 B250 and Q/B250!, the boundary
conditions in Eq.~5! reduces to that of conventional two-regio
model ~insulated dry wall and without a heating@2#!. The main
objective of the present analysis is to obtain the quench fr
temperatureu0 in terms of wetside Biot numberB1 , dryside Biot
number B2 , Peclet number Pe and dimensionless heat fluxQ.
Although Eqs.~4! and ~5! have been formulated for the case
bottom flooding, they are also valid for top flooding.

3 Analytical Solution
In order to employ the Wiener-Hopf technique, Eq.~4! is first

transformed with a new variablew, defined by u(x,y)51
1(Q/B2)1Q(12x)2w(x,y)e2sy, in which s5Pe/2. The gov-
erning equation~Eq. ~4!! then becomes

]2w

]x2 1
]2w

]y22s2w50 0,x,1 2`,y,` (6)

The boundary conditions can be written sequentially as

]w

]x
50 at x50 2`,y,`

]w

]x
1B1w5B1F11

Q

B2
2

Q

B1
Gesy at x51 y,0

]w

]x
1B2w50 at x51 y.0 (7)

w5F11
Q

B2
2

Q

B1
Gesy at y→2`

w50 at y→1`

3.1 Fourier Transform. Fourier transformation of a partia
differential equation and of its associated boundary conditi
generally results in a less complicated problem in the plane of
transformed variable. If the solution of this subsidiary proble
can easily be obtained and inverted, then the transform techn
is straightforward and supposed to be efficient. In the next ste
the analysis, Fourier transform is used to convert the partial
ferential equation~Eq. ~6!! to an ordinary differential equation
The Fourier transform is defined by

F~a,x!5F1~a,x!1F2~a,x!5E
2`

`

w~x,y!eiaydy (8)

with

F2~a,x!5*2`
0 w~x,y!eiaydy,

F1~a,x!5*0
`w~x,y!eiaydy.

The parametera used above is a complex quantity. The far-fie
boundary conditions in Eq.~7! indicate thatw(x,y) is of the order
exp(sy) at y→2`, whereasw(x,y) is of the order exp(2sy) at
y→1`. Thus, the functionsF1(a,x), F2(a,x) are analytic in
the domainsD1 and D2 respectively~@8#, p. 78!. The domains
D1 andD2 are defined~Fig. 1~b!! in the entire complex domain
as:D1 :Im(a).2s, D2 :Im(a),1s. Applying the Fourier trans-
form, Eq. ~6! assumes the form

d2F

dx2 2g2F50 (9)
Journal of Heat Transfer
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in which g5(a21s2)1/2. The transformed boundary condition
are

F8~a,0!50

F28 ~a,1!1B1F2~a,1!52
i

a2 is
B1F11

Q

B2
2

Q

B1
G (10)

F18 ~a,1!1B2F1~a,1!50

where prime denotes the transform ofx-derivatives ofw(x,y).
The general solution of the second order ordinary differen
equation~Eq. ~9!! is

F~a,x!5C1~a!coshgx1C2~a!sinhgx (11)

Imposing the boundary conditions of Eq.~10! into Eq.~11! yields

F1~a,1!1F11~B1 cothg!/g

11~B2 cothg!/gGF2~a,1!

52
i

a2 is S B1 cothg

g1B2 cothg D S 11
Q

B2
2

Q

B1
D (12)

3.2 Wiener-Hopf Technique. The technique of Wiener-
Hopf, which has been fruitfully applied to the class of rewetti
problems, uses the strategy of solving a functional equation~Eq.
~9!! comprising of two unknown functions~F1 andF2! of com-
plex variable. The crucial step in successful execution of
Wiener-Hopf technique depends on the factorization of a functi
which is analytic in a strip, into the product of two functions th
are analytic in the overlapping half-planes. In this context, let

K~a!5K1~a!K2~a!5
11~B1 cothg!/g

11~B2 cothg!/g
(13)

where the functionsK1(a), K2(a) are analytic in the domains
D1 andD2 respectively. Now the kernel functionK(a), in con-
nection with Eq.~12!, is to be decomposed toK1(a) andK2(a)
in accordance with the Wiener-Hopf technique. This is acco
plished by rearranging Eq.~12! to obtain

F1~a,1!

K1~a!
2

i

a2 is S Q

B2
1

1

12l D F 1

K1~a!
2

1

K1~ is!G
52

i

a2 is S Q

B2
1

1

12l D FK2~a!2
1

K1~ is!G
2F2~a,1!K2~a! (14)

wherel5B2 /B1 . In Eq. ~14!, each side characterizes the sam
‘‘entire function’’, through its representation in the upper an
lower halves of thea-plane. SinceF1(a,1) andF2(a,1) tend to
zero at infinity in their half planes of analyticity, whileK1(a) and
K2(a) remain bounded, it follows that the entire function va
ishes according to Liouville’s theorem~@8#, p. 27!. Therefore,
equating both sides of the Eq.~14! to zero, F1(a,1) and
F2(a,1) are determined as

F1~a,1!5
i

a2 is S Q

B2
1

1

12l D F12
K1~a!

K1~ is!G
(15)

F2~a,1!52
i

a2 is S Q

B2
1

1

12l D F12
1

K2~a!K1~ is!G
3.3 Quench Front Temperature. Using the above expres

sions ofF1(a,1) andF2(a,1), quench front temperature ma
be obtained by inverting the Fourier transform~Eq. ~8!!. Such an
attempt may become tedious because, in order to carry out
Fourier inversion, it would be necessary to evaluate the resid
of the functionF~a,1! in the complex domain. Alternatively, in
the present paperu0 has been calculated in a simplified approa
@1# as follows.
OCTOBER 2002, Vol. 124 Õ 877
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rate,
F1~a,1!5E
0

`

w~1,y!eiaydy

5
i

a
w~1,0!2

1

ia E
0

` ]w~1,y!

]y
eiaydy (16)

In the limit a→`, the second integral appearing in Eq.~16! van-
ishes since the quantity]w/]y is bounded@1#. Then, by virtue of
Eqs. ~15!–~16! and invoking an assumption thatK1(a) ap-
proaches unity asa→` ~the assumption will be validated later!,
we obtain

w~1,0!5 lim
a→`

@2 iaF1~a,1!#5S Q

B2
1

1

12l D F12
1

K1~ is!G
(17)

The quench front temperature then becomes

u0511Q/B22w~1,0!5
1

K1~ is! F Q

B2
1

1

12lG2
l

12l
(18)

Now the functionK1( is) may be expressed as an ‘‘infinit
product series’’ or as a ‘‘contour integral.’’ While the former lea
to evaluation of the eigen values of a certain transcendental e
tion, the latter leads to an integral expression which is seemin
more convenient for numerical computation. On applying
Cauchy residue theorem within the strip, the function lnK(a) can
be represented by the following contour integral.

ln K~a!5 ln K1~a!1 ln K2~a!

5
1

2p i EC1

ln K~j!

j2a
dj2

1

2p i EC2

ln K~j!

j2a
dj (19)

where C1 /C2 is an infinite contour lying inside the strip an
passing below/above the pointa ~Fig. 1~b!!. It may be noted that,
due to the asymptotic nature of lnK(a) function ~the order of
ln K(a) being 1/a!, the contribution of vertical sides of the contou
to the integral vanishes at Re~a!→6`. Equation~19! can be suc-
cinctly written as

ln K6~a!56
1

2p i EC6

ln K~j!

j2a
dj (20)

from which it follows thatK6(a)51 asa→`, as assumed ear
lier. In order to evaluate the functionK1( is), the contourC1 may
be shifted to the real axis to yield

ln K1~ is!5
1

2p i E2`

1` ln K~j!

j2 is
dj (21)

Further, as the functions lnK(j), j ln K(j) exhibit even and odd
properties respectively, Eq.~21! thereby reduces to

ln K1~ is!5
s

p E
0

` lnK~j!

j21s2 dj (22)

For computational purposes it is advantageous to transformj, by
j5s tanV, to finally obtain the quench front temperature

u05
1

K1~ is! F Q

B2
1

B1

B12B2
G2

B2

B12B2
(23)

in which,

K1~ is!5expF 1

p E
0

p/2

lnH 11~B1 coths secV!/s secV

11~B2 coths secV!/s secVJ dVG .

It is of interest to examine the limiting solution of the abo
equation for the case that has been investigated by Olek@2#,
namely, the rewetting of an infinite slab without any heating
precursory cooling. By assigningQ50, B250 andQ/B250 in
878 Õ Vol. 124, OCTOBER 2002
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Eq. ~23!, the expression foru0 reduces to exactly the same as th
of Olek @2# which, in turn, substantiates the present solution.

3.4 Critical Heat Flux. The quench front temperature at th
critical ~dryout! heat flux has been deduced by specifyings50 in
Eq. ~23!. Thus,K1( is) simplifies to

K1~ is!5expF 1

p E
0

p/2

ln~B1 /B2!dVG5AB1

B2
(24)

The quench front temperature at the critical heat flux is fina
determined as

u05
Q

AB1B2

1
AB2

AB11AB2

(25)

The heat fluxQ appearing in Eq.~25! may be regarded as th
critical heat fluxQcri , which characterizes the maximum allow
able heat input to a slab to inhibit the dryout of the coolant.

4 Results and Discussion
Numerical values of the quench front temperature are obtai

from the expressions in Eqs.~23! and~25!, for a practical range of
model parametersB1 , B2 , Pe andQ. For this purpose, the integra
appearing in Eq.~23! has been numerically calculated by Sim
son’s 1/3 rule with 101 equally spaced base points. Experime
investigations on quenching@9# reveal the existence of four dis
tinct heat transfer regimes along the wall, the regimes being
marcated by the characteristic hot surface temperature. These
zones are: forced convection of subcooled liquid, nucleate boil
wet and dry transition boiling and film boiling. Quench front
observed to exist in the transition zone. The heat transfer co
cient in the transition zone is shown to be 105– 106 W/m2-K and
the vapor cooling heat transfer coefficient in the film boiling zo
is in the order of 102 W/m2-K. In the present analysis the value
of h1 andh2 are adopted from the experimental results of Barn
et al. @9#. Hence the values ofh2 are set equal to 1023h1 and,
therefore,B251023B1 .

The variation of quench front temperature with heat flux a
Peclet number is shown in Fig.~2!, for a fixed value of Biot
number. Hereu0 is found to increase with increase in Peclet nu
ber. With fixed material properties and dimensions, Peclet num
and Biot number represent the quench front velocity and the h
transfer coefficient respectively. For prescribed values of heat
and Biot number,u0 increases with increase in quench front v
locity. This may be due to the fact that a higher relative veloc
between the slab and the coolant allows less time for suffic
heat transfer to take place, resulting in a higher value ofu0 . The
above trend also reflects the fact that, for the same rewetting

Fig. 2 Quench front temperature for various heat flux and Pe-
clet number
Transactions of the ASME
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an increasing slab thermal diffusivity tends to reduceu0 whereas
the increasing slab thickness has the opposite effect. Further,
fixed Peclet number,u0 increases with increase inQ. Apparently,
a higher heat flux causes more heat transfer to the slab and h
this would increaseu0 .

The dependence of quench front temperature on Biot num
and dimensionless heat flux is shown in Fig.~3!, whereu0 de-
creases with increase in Biot number for a given Pe andQ. A
higher Biot number results in a higher heat transfer coefficie
This enhanced heat transfer coefficient may cause to decreasu0 .
The above trends are in obvious accord with the predictions ba
on physical ground. In all cases,u0 decreases as Biot numbe
increases, reflecting the fact that a quench front progresses
easily when the heat transfer to the coolant is increased. O
similar ground, conversely, one would conclude that an increa
Q has the opposite effect on the quench front velocity.

The dependence of quench front temperature on Biot num
and dimensionless heat flux is shown in Fig.~4!, with Pe50. The
physical meaning of Pe50 is that the quench front ceases to mo
when Q approaches its critical value. This is the case that
surface can no longer be wetted. ForQ.Qcri , the quench front
will reverse its direction and the wetted surface will be dried.
this case, the slab will be heated by a heat flux that exceeds
maximum heat removal capacity by convection and boiling a
thus, dryout would occur. Further, the present solution has b
compared with those of Yao@5# in Fig. ~2! and in Fig.~4!. The

Fig. 3 Quench front temperature for various heat flux and Biot
number

Fig. 4 Quench front temperature at the critical heat flux
Journal of Heat Transfer
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results are in good agreement with those in@5# for lower values of
Biot and Peclet numbers while the deviation becomes more
nounced as Biot and Peclet numbers become large. In Yao’s@5#
analysis, the temperature distribution along the width of the s
was assumed to be quadratic and with this assumption, the s
tion was obtained for a two-dimensional conduction model. A
parently, the solution may deviate at higher Biot and Peclet nu
bers due to the above approximation. Finally, the model is redu
to the conventional model~by settingQ50, B250 and Q/B2
50! and illustrated in Fig.~5!. As expected,u0 increases with
increase in Peclet number and with decrease in Biot number.

The Wiener-Hopf technique yields a solution for the quen
front temperature~Eq. ~23!!, which is more elegant and accura
than results obtained by other analytical methods. In particu
Wiener-Hopf solution is superior to the one by separation of va
ables, since it overcomes the accuracy problems due to slow
vergence of the series expansions that stem from discontinuit
the surface heat flux at the quench front@2#. The technique makes
use of decomposing a kernel function in the complex Fou
plane so as to resolve the singularity arising out of discontinu
boundary conditions at the quench front, as in the case of a re
ting problem. The explicit formula for the quench front temper
ture obtained in the present study is valid for all Biot and Pec
numbers. However, the present model is limited to small Pe
numbers with regard to heat pipes. This is due to the fact tha
the case of large Peclet numbers, a thermal boundary laye
formed near the cooling surface of a heat pipe and this has
been incorporated in the present model. Besides, large Biot n
bers are usually associated with large Peclet numbers, unles
internal heating is large. Since the internal heating effect is a
not considered in the model, the present analysis is limited to b
small Biot and Peclet numbers in case of heat pipes.

5 Conclusion
An analytical solution for rewetting of an infinite slab with

uniform heating has been obtained, employing the Wiener-H
technique. In general, quench front temperature is found to
crease with increase in Peclet number and dimensionless heat
and with decrease in Biot number. The boundary conditions in
present formulation require liquid/vapor temperatures and liqu
vapor heat transfer coefficients as input parameters, these lim
tions being inherent in a conduction-controlled rewetting mod
The arbitrariness of the choice of their values may be eliminate
a conjugate heat transfer model is considered, where the en
equations of solid, liquid and vapor regions need to be sol
simultaneously.

Fig. 5 Quench front temperature for various wetside Biot
number and Peclet number without heating and precursory
cooling
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Nomenclature

B 5 Biot number
C 5 specific heat
h 5 heat transfer coefficient
k 5 thermal conductivity
L 5 length of the slab

Pe 5 Peclet number
q 5 heat flux
Q 5 dimensionless heat flux
s 5 half of the Peclet number
t 5 time

T 5 temperature
u 5 quench front velocity

X, Y 5 physical coordinates
x̄, ȳ 5 coordinates in quasi-steady state
x, y 5 dimensionless coordinates in quasi-steady state

Greek Alphabets

d 5 thickness of the slab
l 5 ratio of dryside to wetside Biot numbers
u 5 dimensionless temperature
r 5 density
880 Õ Vol. 124, OCTOBER 2002
Subscripts

0 5 quench front
1 5 wet region
2 5 dry region
s 5 saturation

w 5 initial wall condition
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