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1 Introduction ary heat flux and the dryout induced by the heat flux is of specific

The process of quenching of hot surfaces is of practical im Oin_terest while considering the decay heating of a nuclearffiel
P d g ot hot ) P NPAE in the design of heat pipes for thermal radia{@g]. Chan and
tance in nuclear and metallurgical industries. For instance, in t

event of a postulated loss-of-coolant acciddrDCA) in water ang|[7] observed that the existence of heat flux on the wall
cooled reath)ors the clad surface of the fuel elements may redgses an unsteady state solution for the heat conduction equation,

. ' : Yy n after the equation is transformed to the Lagrangian coordi-
very high temperature because the stored energy in the fuel cang

be removed adeauately by the surrounding steam. In order moving with the quench front. In this respect, they also con-
€ remo €q y by S g steam. Order Mered the rewetting velocity as well as the plate temperaaire
bring the reactor to a cooled shutdown condition, an emerge

. . i ¥ ahead of the guench frontio be time variant. In the present
core qoollng system s actlvated_ o refl_ood the core. _The i per, however, precursory cooling in the dry region has been
d_elay in re-establls_hlng t_he_e_ffecnve cooling may resglt in a cla 'cludéd in the t;oundary condition in order to consider the quasi-
ding temperature rise, S|gn|f|cantly_above the saturation t.empe@éady state conduction equation. Further, reported literature on
ture. If the cladding temperature rises above the rewetting s,y tical investigations indicates that Wiener-Hopf solution for
perature, a stable vapor blanket will prevent the immediate ret rewetting model with a boundary heat flux does not exist. In
to liquid-solid contact. Rewetting is the re-establishment of liqui e present analysis, Wiener-Hopf technique has been employed
contact with a hot cladding surface and, thereby, bringing it 10 3fy;ayse of its accuracy and computational simplicity. Besides, the
acceptable temperature. Also, quenching phenomenon is of cQfyantage of using the Wiener-Hopf technique may be recognized
siderable practical interest in many other applications such @Scase of handling discontinuous boundary conditions, where the
steam generators, evaporators, cryogenic systems and metallugis jarity due to the discontinuity can be readily resolved by
cal processing. The cooling process during quenching is chargecomposing an appropriate kernel function in the complex Fou-
terized by the formation of a wet patch on the hot surface, whigixr gomain.
eventually develops into a steadily moving quench front. As the |, the present study, the physical model consists of an infinitely
quench front moves along the hot surface, two regions can Beiended vertical slab with one side flooded and the other side
identified: a dry region ahead of the quench front and a wet regigipjected to a uniform heat flux. The model assumes constant but
behind the quench front. The upstream end of the sOldt gitferent heat transfer coefficients for the wet and dry regions on
region is cooled by convection to the contacting liquid, whilghe flooded side. The two-dimensional quasi-steady conduction
its downstream enddry region is cooled by heat transfer to aequation governing the conduction-controlled rewetting of the in-
mixture of vapor and entrained liquid droplets, called precursoppite slab has been solved by Wiener-Hopf technique. The present
cooling. ] ) ) ) solution involves the exact decomposition of the kernel function,

The rewetting model for a two-dimensional two-region heajg that the solution may be valid for all range of values of the
transfer with a step change in heat transfer coefficient at th@rameters used in the model. The solution has been compared

quench front has been solved for a single slab3| or for a with other analytical solutions and depicted in the graphical form.
composite slalj4]. In the single slab model the unwetted side is

considered to be ad_iab_atic, whereas in case of a composite sl apMathematical Model
three layer composite is considered to simulate the fuel and the ) ) ) ] )
cladding separated by a gas filled gap between them. The squtiorTh_e two-dimensional transient heat conduction equation for the
method commonly employed is Wiener-Hopf technique. The twalab is
dimensional rewetting model for a single slab with a uniform heat 2T 02T
flux and precursory cooling has been solved by an approximate k(—2+ -
integral method5]. The one-dimensional rewetting model with a gxX= Y
uniform heat flux has been solved for a smooth p[&feand for whereL is the length of the slab andlis the thickness of the slab.
both smooth and grooved plated, considering the dry region to The density, specific heat and thermal conductivity of the slab
be adiabatic. material arep, C, andk respectively. The origin of the coordinate
The analysis of rewetting of a hot surface subjected to a bourfdame is at left-bottom corner of the slab. To convert this transient
equation into a quasi-steady state equation, the following transfor-
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\+oo analysis, the heat transfer coefficiémtis assumed to be constant
over the entire wet region. The coolant temperature is taken to be

y—+=). The above two assumptions are adequate to prescribe
the temperature at infinityy(— *+ ). The far-field boundary con-
ditions then become

- §§— equal to its saturation temperaturg. On the dry side of the slab,
] 053, the wall is cooled by the surrounding vapor. The heat transfer
o° ¢ DRY coefficient accounti_ng f_or both convective and radiative cc_)oling
- ] . REGION _ef'fects on the dry side is assumed equahjo a constant, which _
°q is smaller tharh,. The temperature of the surrounding vapor is
— °o: VAPOR assumed equal t6,,, which can be interpreted as the initial tem-
y '°°;O perature of the hot surface without a boundary heat flux. This is
- o justified because the vapor in dry region would be superheated
q °d due to the existence of imposed surface heat flux on the wall. The
Tu rewetting(quench front temperature is denoted by, .

f; Following Yao [5], it may be envisaged that the temperature
| WET field is sufficiently flat in the axial direction at infinity. Conse-
| REGION quently, the first and second derivatives of temperature in
- y-direction can be neglected at far upstream of the quench front
" | COOLANT @tyﬂ—oo) as well as at far downstream of the quench fr@it

\/\/\»]4

(@) T:TS+E(5—Y)+hﬂ Y
! ®

A _ _
Im(ar) T:TWJrE((s—x)Jrhi Y+
2

The conventional rewetting mode{githout a boundary heat
+S flux) usually assume the vapor temperature in the dry region equal
to its saturation temperature so that it would be used as a sink
C. temperature. In the presence of a boundary heat flux, however, it
g is well justified to assume the vapor temperature equal to the
Re(o) init@al wall temperature because the vapor would be superheated

owing to the existence of the boundary heat flux. The surface
temperature of the slab at far ahead of the quench ftank
—S ‘ =48, y—+») can be calculatedEqg. (3)) to be equal to T,

D +0a/h,). In situations wherTy=T,,, the temperature of dry re-
- gion wall T(48,y) will be aboveT,, and, hence, the wall will be
(b) cooled by the vapor. On the other hand, Te=<T,,, only a finite
part of the dry region wall immediately ahead of the quench front
will be less thanT,,, whereas for the remaining part it will be
more thanT,, over an infinite length. This implies that the former
part of the dry region wall of a finite length will be heated by the
whereu is the constant quench front velocity ardy are normal vapor while the latter part of an |nf|n|te length will be co_oled by
the vapor and the overall effect is to cool the dry region wall.

and axial coordinates respectivellyig. 1(a)). Experiments have X N
shown that, if the slab is long enough compared to the penetratibp-S: ©" thé whole, in both the situations the vapor temperature
uld behave as the sink temperature. Moreover, the boundary

depth to heat transfer field, the temperature distribution around e

heat source/sink soon becomes independent of time. That is, Cgqaiions in Eq.(3) suggest that precursory cooling in the dry
observer stationed at the origin of the movingy) coordinate région cannot be neglected in the case of existence of boundary

system fails to notice any appreciable change in the temperatlm:"eat flux on thle Wail. Equatiof2) can be expressed in the follow-
distribution around him as the front moves on. This is identified 449 dimensionless form

the apparent steady state or quasi-steady state condition. Thus the 926 26

transformed heat conduction equation in a coordinate system 5zt 52" Pe@ =0 0<x<1l —oo<y<w 4)
moving with the quench front is

T  9°T pCudT

- = X< —o<y- a0
?‘F W+ K ay 0 0<x<é co]y<<oo (2) 5+Q:0 at x=0 —o<y<®

Fig. 1 (a) Physical domain of infinite slab; and (b) common
strip of analyticity in the complex Fourier plane.

The associated boundary conditions are

The above equation is the governing partial differential equation 90

in quasi-steady state for the slab, in whigh/9t=0 in the mov- —+B,#=0 atx=1 y<0
ing coordinate system. IX

In conduction-controlled rewetting analysis, it is believed that 20
conduction of heat along the slab from the dry region to wet —+By(#—1)=0 atx=1 y>0
region is the dominant mechanism of heat removal ahead of the X (5)
quench front, which results in a lowering of the surface tempera- Q
ture immediately downstream of the quench front and causes the =—0—+Q(1l—x) aty——o
quench front to progress further. Since only axial conduction is Bs
considered, the effect of coolant mass flux, coolant inlet subcool- Q
ing and its pressure gradient etc. are not accounted for explicitly, 0=1+ ™ +Q(1-x) aty—+o
but implicitly in terms of wet region heat transfer coefficient, 2
which is incorporated in the boundary condition. In the present =6, atx=1 y=0
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The non-dimensional variables used above are in which y=(a?+s?)%2 The transformed boundary conditions

XY TTe o s g are
e Ve T Uk Tk ®'(a,0=0
pCus qé To—Ts [ Q Q
= = . P (a,1)+B®P (@, ])=———=By| 1+ —— =— 1
P Q=g M fo=7 7. (aD+B® (D)= o By 1t o= g (10)
It may be verified that for no heat flux condition with adiabatic ' (a,1)+B,d ., (a,1)=0

dry side (by settingQ=0 B,=0 and Q/B,=0), the boundary . o
conditions in Eq.(5) reduces to that of conventional two-regiorwhere prime denotes the transform xftlerivatives of p(X,y).
model (insulated dry wall and without a heatirig@]). The main The general solution of the second order ordinary differential
objective of the present analysis is to obtain the quench frogguation(Eq. (9)) is

temperatured, in terms of wetside Biot numbés,, dryside Biot _ .

numberB,, Peclet number Pe and dimensionless heat @ux P (a,x)=C,(a)coshyx+Cy(a)sinhyx (11)

Although Egs.(4) and (5) have been formulated for the case ofmposing the boundary conditions of E@.0) into Eq. (11) yields
bottom flooding, they are also valid for top flooding.

1+ (B, cothy)/y
3 Analytical Solution P, (a, 1)+ W,}D(a,l)
In order to er_nploy the Wiem_ar—Hopf tec_hnique, Ed4) is first i B, cothy 0 o
transformed with a new variablep, defined by 6(x,y)=1 =— , )( = _ _) (12)
+(Q/B,)+Q(1—x)— o(x,y)e"%, in which s=Pe/2. The gov- a—is\y+B;cothy B, B;

erning equatior(Eg. (4)) then becomes 3.2 Wiener-Hopf Technique. The technique of Wiener-

Po o ) Hopf, which has been fruitfully appl_ied to the g:lass of rewetting
WJF (9_y2_5 =0 0<x<1 —oo<y<® (6) problems, uses the strategy of solving a functional equdtap
(9)) comprising of two unknown function@b , and® ) of com-
The boundary conditions can be written sequentially as plex variable. The crucial step in successful execution of the
Wiener-Hopf technique depends on the factorization of a function,
ﬁ_‘P:o atx=0 —oco<y<w which is analytic in a strip, into the product of two functions that
X are analytic in the overlapping half-planes. In this context, let
Je Q Q sy 1+ (B, cothy)/y
(7X+Bl(P B, 1+ B, B, e at x=1 y<O0 K(a)—KJr(a)K,(a)—m/ (13)

de where the functionK, («), K_(a) are analytic in the domains
“x FB29=0 atx=1 y>0 (7) D, andD_ respectively. Now the kernel functidfi(«), in con-
nection with Eq.(12), is to be decomposed ¥, («) andK _(a)

Q Q sy in accordance with the Wiener-Hopf technique. This is accom-
p=|1+ B, B,° aty——= plished by rearranging E¢12) to obtain
=0 aty— -+ D, (1) i ng 1 1 1
Ki(a) a—is\B, 1-\N/|K. (a) K,(is)

3.1 Fourier Transform. Fourier transformation of a partial

differential equation and of its associated boundary conditions i Q 1 1
generally results in a less complicated problem in the plane of the T ais B_z + T—x K_(a)— K. (s)
transformed variable. If the solution of this subsidiary problem

can easily be obtained and inverted, then the transform technique —-® (a,)K_(a) (14)
is straightforward and supposed to be efficient. In the next step o _ . .
the analysis, Fourier transform is used to convert the partial dwﬂere)\fleBl. In Eq. (14), each side characterizes the same

; ; : : : ; entire function”, through its representation in the upper and
forential equation(®a. (©) g, an rdinary differential equaion. o, or haives of therplane. Sincab ., (a,1) andd> (1) tend to

zero at infinity in their half planes of analyticity, white, («) and
* iay K_(«a) remain bounded, it follows that the entire function van-
m‘P(X'y)e dy (8 ishes according to Liouville’s theoreri8], p. 27. Therefore,

(I)(a,x)=<l)+(a,x)+fl),(a,x)=f
equating both sides of the Ed14) to zero, ®,(a,1) and

with ®_(a,1) are determined as
D _(a,x)=[20(x,y)edy, O (a) Q N 1 ){1 K.(a)
. +\a,l)= - = — - A
@ (ax)=Lge(xy)eVdy. aisiB 17N K9] g
The parametetr used above is a complex quantity. The far-field _ [ Q 1 1
boundary conditions in Ed7) indicate thatp(x,y) is of the order ¢ _(a)=~ a—is B_2+ 1—x 1- K _(a)K.(is)

exp@y) at y— —o, whereasp(x,y) is of the order expfsy) at

y— +o. Thus, the function® . (a,Xx), ®_(«,x) are analytic in 3.3 Quench Front Temperature. Using the above expres-
the domainsD, and D _ respectively([8], p. 78. The domains sions of®_(«,1) and®_(«,1), quench front temperature may
D, andD_ are definedFig. 1(b)) in the entire complex domain be obtained by inverting the Fourier transfof&r. (8)). Such an
as:D., :Im(a)>—s, D_:Im(a)<+s. Applying the Fourier trans- attempt may become tedious because, in order to carry out the

form, Eq.(6) assumes the form Fourier inversion, it would be necessary to evaluate the residues
> of the function®(a,1) in the complex do_main._ Altgr_natively, in
—20=0 9) the present papél, has been calculated in a simplified approach
ax? [1] as follows.
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<I>+(a,1)=J e(ly)e'dy

0
i 1 (7de(Ly) .y
—;@(1,0)—Gf0 oy © dy  (16)

In the limit a—, the second integral appearing in Ef6) van-

ishes since the quanti§p/dy is bounded1]. Then, by virtue of
Egs. (15—(16) and invoking an assumption that, (a) ap-

proaches unity ag—~ (the assumption will be validated lajer
we obtain

: . Q 1 1
¢(1,0):ilinx[—laq)+(a,l)]: B_2 + m)[l— m
7)
The quench front temperature then becomes
Q 1 A
0p=1+Q/By,—¢(1,0= K. (is) B—2+ 1_)\}— —x (18)

B1=10.0
B2=0.001B1

10

Present Soln
———-Soln Yaol5]

IS EENE L1

10-2 10-t

QUENCH FRONT TEMPERATURE

R 1

10-3
HEAT FLUX, Q

Fig. 2 Quench front temperature for various heat flux and Pe-
clet number

Now the functionK , (is) may be expressed as an “infinite Eq. (23), the expression fof, reduces to exactly the same as that
product series” or as a “contour integral.” While the former leadsf Olek [2] which, in turn, substantiates the present solution.
to evaluation of the eigen values of a certain transcendental equa- .
tion, the latter leads to an integral expression which is seemingly3-4 Critical Heat Flux. ~ The quench front temperature at the
more convenient for numerical computation. On applying th@itical (dryoud heat flux has been deduced by specifysg0 in

Cauchy residue theorem within the strip, the functioK(r) can
be represented by the following contour integral.

INnK(a)=InK (a)+InK_(a)
1 InK(&) 1 J
C_

"%t o Ea % o

InK(¢)

—a dé (19)

where C, /C_ is an infinite contour lying inside the strip and

passing below/above the poiat(Fig. 1(b)). It may be noted that,
due to the asymptotic nature of K{«) function (the order of

Eq. (23). Thus,K, (is) simplifies to

o 1 (w2 - /B,
K. (is)=ex ;fo In(B,/B,)dQ |= B, (24)

The quench front temperature at the critical heat flux is finally
determined as

P B
° VBB, \B;+B;

(25)

In K(e) being 1k), the contribution of vertical sides of the contourThe heat fluxQ appearing in Eq(25 may be regarded as the

to the integral vanishes at Re— 0. Equation(19) can be suc-
cinctly written as
InK(¢)

1
InKt(a):iz_Trifc P

from which it follows thatK ..(a)=1 asa—x, as assumed ear-
lier. In order to evaluate the functid, (is), the contouC, may
be shifted to the real axis to yield

1 (*=InK(&)

_f—x g_is

2mi
Further, as the functions K(¢), ¢InK(£) exhibit even and odd
properties respectively, ER21) thereby reduces to

s (*InK(§)

Ty E48°

dé (20)

INK,(is)= d¢ (21)

InK_(is)

dé (22)

For computational purposes it is advantageous to transgotoy
&=stan(}, to finally obtain the quench front temperature

1 [Q B B,
=i s |B, " Bl—BJ_ B, B, =
in which,
K (is)— 1 ﬂ’zl 1+ (B, coths secQ))/s sec) 40
+(is)=ex T o n 1+ (B, coths secQ))/s sec) :

critical heat fluxQg,;, which characterizes the maximum allow-
able heat input to a slab to inhibit the dryout of the coolant.

4 Results and Discussion

Numerical values of the quench front temperature are obtained
from the expressions in Eg3) and(25), for a practical range of
model parameter®,, B,, Pe andQ. For this purpose, the integral
appearing in Eq(23) has been numerically calculated by Simp-
son’s 1/3 rule with 101 equally spaced base points. Experimental
investigations on quenchin@] reveal the existence of four dis-
tinct heat transfer regimes along the wall, the regimes being de-
marcated by the characteristic hot surface temperature. These four
zones are: forced convection of subcooled liquid, nucleate boiling,
wet and dry transition boiling and film boiling. Quench front is
observed to exist in the transition zone. The heat transfer coeffi-
cient in the transition zone is shown to be’2a® W/m?-K and
the vapor cooling heat transfer coefficient in the film boiling zone
is in the order of 1®W/m?-K. In the present analysis the values
of h; andh, are adopted from the experimental results of Barnea
et al.[9]. Hence the values df, are set equal to 1Gh, and,
therefore,B,=10"3B;.

The variation of quench front temperature with heat flux and
Peclet number is shown in Fig2), for a fixed value of Biot
number. Herd), is found to increase with increase in Peclet num-
ber. With fixed material properties and dimensions, Peclet number
and Biot number represent the quench front velocity and the heat
transfer coefficient respectively. For prescribed values of heat flux
and Biot numberg, increases with increase in quench front ve-

It is of interest to examine the limiting solution of the abovdocity. This may be due to the fact that a higher relative velocity

equation for the case that has been investigated by ¢k

between the slab and the coolant allows less time for sufficient

namely, the rewetting of an infinite slab without any heating dreat transfer to take place, resulting in a higher valué,0fThe

precursory cooling. By assigning=0, B,=0 andQ/B,=0 in

878 / Vol. 124, OCTOBER 2002

above trend also reflects the fact that, for the same rewetting rate,
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Fig. 3 Quench front temperature for various heat flux and Biot Fig. 5 Quench front temperature for various wetside Biot
number number and Peclet number without heating and precursory

cooling

an increasing slab thermal diffusivity tends to redéigevhereas results are in good agreement with thosgghfor lower values of
the increasing slab thickness has the opposite effect. Further, fddiat and Peclet numbers while the deviation becomes more pro-
fixed Peclet numbew, increases with increase @. Apparently, nounced as Biot and Peclet numbers become large. In Yab's
a higher heat flux causes more heat transfer to the slab and hemgalysis, the temperature distribution along the width of the slab
this would increasd, . was assumed to be quadratic and with this assumption, the solu-
The dependence of quench front temperature on Biot numidiEm was obtained for a two-dimensional conduction model. Ap-
and dimensionless heat flux is shown in Fg), where 6, de- parently, the solution may deviate at higher Biot and Peclet num-
creases with increase in Biot number for a given Pe @d\ bers due to the above approximation. Finally, the model is reduced
higher Biot number results in a higher heat transfer coefficieif the conventional modefby settingQ=0, B,=0 and Q/B,
This enhanced heat transfer coefficient may cause to decfgase =0) and illustrated in Fig(5). As expectedd, increases with
The above trends are in obvious accord with the predictions badadrease in Peclet number and with decrease in Biot number.
on physical ground. In all case#, decreases as Biot number The Wiener-Hopf technique yields a solution for the quench
increases, reflecting the fact that a quench front progresses miseat temperaturéEq. (23)), which is more elegant and accurate
easily when the heat transfer to the coolant is increased. Orihan results obtained by other analytical methods. In particular,
similar ground, conversely, one would conclude that an increasiMgiener-Hopf solution is superior to the one by separation of vari-
Q has the opposite effect on the quench front velocity. ables, since it overcomes the accuracy problems due to slow con-
The dependence of quench front temperature on Biot numbéargence of the series expansions that stem from discontinuity of
and dimensionless heat flux is shown in Fig), with Pe=0. The the surface heat flux at the quench frp2} The technique makes
physical meaning of PeQ is that the quench front ceases to movése of decomposing a kernel function in the complex Fourier
when Q approaches its critical value. This is the case that th#ane so as to resolve the singularity arising out of discontinuous
surface can no longer be wetted. FRr>Q, the quench front boundary conditions at the quench front, as in the case of a rewet-
will reverse its direction and the wetted surface will be dried. Iting problem. The explicit formula for the quench front tempera-
this case, the slab will be heated by a heat flux that exceeds thee obtained in the present study is valid for all Biot and Peclet
maximum heat removal capacity by convection and boiling andumbers. However, the present model is limited to small Peclet
thus, dryout would occur. Further, the present solution has beewmbers with regard to heat pipes. This is due to the fact that, in
compared with those of YafB] in Fig. (2) and in Fig.(4). The the case of large Peclet numbers, a thermal boundary layer is
formed near the cooling surface of a heat pipe and this has not
been incorporated in the present model. Besides, large Biot hum-
bers are usually associated with large Peclet numbers, unless the
internal heating is large. Since the internal heating effect is also
not considered in the model, the present analysis is limited to both
small Biot and Peclet numbers in case of heat pipes.

Present Soln

————— Soln Yaol5] B1=0.1
Pe=0.0
B2=0.001 B

10

5 Conclusion

An analytical solution for rewetting of an infinite slab with a
uniform heating has been obtained, employing the Wiener-Hopf
technique. In general, quench front temperature is found to in-
crease with increase in Peclet number and dimensionless heat flux,
and with decrease in Biot number. The boundary conditions in the
present formulation require liquid/vapor temperatures and liquid/
R i ' vapor heat transfer coefficients as input parameters, these limita-
N AL tions being inherent in a conduction-controlled rewetting model.

10-4 10-3 10-2 101 The arbitrariness of the choice of their values may be eliminated if
CRITICAL HEAT FLUX, Qeri a conjugate heat transfer model is considered, where the energy
equations of solid, liquid and vapor regions need to be solved
Fig. 4 Quench front temperature at the critical heat flux simultaneously.

T

0.1

QUENCH FRONT TEMPERATURE
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Nomenclature

K<€ 4 0lagr=s0w

x X|X
<

Gree

T Y

Biot number

specific heat

heat transfer coefficient

thermal conductivity

length of the slab

Peclet number

heat flux

dimensionless heat flux

half of the Peclet number

time

temperature

quench front velocity

physical coordinates

coordinates in quasi-steady state
dimensionless coordinates in quasi-steady state

Alphabets

thickness of the slab

ratio of dryside to wetside Biot numbers
dimensionless temperature

density
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Subscripts

0 = quench front

1 = wet region

2 = dry region

s = saturation

w = initial wall condition
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