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Abstract—In this paper, we study the application of discretiza- like a boundary layered SM controller, and which can be
tion of equivalent SM controller in DC-DC buck converters. ysed successfully to eliminate the chattering [12] accross
Based on this control logic, we derive the two-dimensionalX e gyitching manifold. However, since the trajectory mfte

D) piecewise smooth (PWS) discontinuous map of the converte . - o . . .
system. Some inherent dynamical properties of system’s stey- intersecting the switching manifold leaves this manifattg

state behaviors (i.e., the bifurcation behaviors) are alsstudied. invariance property enjoying in a continuous SM control
The presented one- and two-parameter bifurcation digramsilsow may deteriorate drastically. Studies on this subject haenb
the domains of existence of different oscillatory modes antheir  reported recently, where the investigations are normadised
sequence of occurrence of the converter system, which are it® 5 two distinct approaches. One is the discrete-time gjidin
different from the bifurcation behaviors observed in 2-D PWS d trol h 1131 [14 d other is the direct
continuous maps [1]. mode control approac [13], [14], and © er is the direc
- o o discretization of equivalent SM control using Zero-Order-
Index Terms—Sliding mode (SM) control, digital sliding mode Hold (ZOH) circuit [15]. The use of ZOH circuits however
controller, DC-DC converter, 2-dimensional piecewise smuth . - " . . . .
(PWS) discontinuous map, complexity. shoyv various kinds of |rregul_ar|_t|es |nclud|ng_ subhgrrmom
oscillations, chaos, and coexisting attractor in a simple 2
dimensional (2-D) system [15], [16], [17]. In order to evaie
o _ ~such guantitative discretization behaviors and to devéhep
The sliding mode (SM) controller is well known for itspreventive measures for these unwanted behaviors, it is-the
robustness and guaranteed stability under parametetigasa e of practical importance to study the discretizatiofeet
and external perturbations [2], [3]. Inspite of these uBiqQuyf S\ controllers.
advantages, it is practically impossible to implement theal In this paper, we apply the discretized equivalent SM
SM controller for real-life variable structure power elextics controller in DC-DC converter and some inherent dynamical
systems. Ideally, the SM controller operates at infinitetcvi  properties are studied. The system steady-state behaiers
ing frequency, so that, the controlled variables can tréek tgiscussed using the 2-D discontinuous maps. Lower bounds
switching surface to achieve the desired dynamic respame & sampling interval of the ZOH circuit is also obtained
steady state system operation [4]. This typical requirdmesmerically.

results in excessive switching losses, inductor and toaunedr
core losses, and electromagnetic interference (EMI) naise I1. EQUIVALENT CONTROL BASEDSM CONTROLLED
thereby, challenges the feasibility of applying SM cori&ol BUCK CONVERTER AND TS DIGITAL REALIZATION

in real-lite applications._ L . The SM controller provides an averaged control law [18]
.O.ne way o constrict ,th's |n_f|n|te sw@chmg frequencyy, necessarily maintain the state trajectory on the sliding

within a practical range 1s by incorporating the boundanynitoiq However, the discretized models of the actual dy-

layers around the sI|d|_ng surface. Over the past decaﬂeo\mical systems may have some properties different from the

numerous control techniques, such as, bang bang contiol [3kqin5| one. For instance, for a differential equationihgva

[6]. adoptive hysteresis control [7], [8], and fixed freqagn ,ergic orbit, its discretized system does not necesshaive

control [9], [10] have been reported. In most of the cases, 1 ., regponding periodic orbit. On the other hand, for a-well

SM controllers are implemented in analog domain, and Q& ved continuous-time system with no periodic osailfei

switching frequency has been restricted by using the Caecefﬁay have periodic behaviors once it is discretized. Here, we

of hysteresis-modulation (HM) or delta-modulation tecfu®. i s5 this with an example of power electronics converter
Once the SM controller is implemented for real systems, it

is then transformed into a finite switching quasislidingemo
(QSM) controller. The proximity of QSM controller will be
closer to the ideal one, if the switching frequency tendsatolv

I. INTRODUCTION

A. SM Controlled Buck Converter in Continuous-time Domain

For a SM controlled converter under continuous conduction
mode (CCM) of operation (see Fig. 1), the general control

infinity. ) i
However, the implementation of SM controllers in digital@riables can be defined as
platforms also allows the fixed frequency switching opera- 1 = Vig—v
tion. Because of the existence of a QSM band around the dx dv i v
. . . — 1 — — 1
switching surface [11], [12], such controllers inherentlgrk 2= T T T T o + RC @)
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For an ideal SM controlled buck converter, these conditions
can be easily derived from (5) and (6), as

1) If § —0F,dS/dt <0 ; u=1, then

ds —g2r VI V;e
== 1+(91—%)$2—92[ f}<0

Vin

dt ~ LC LC LC
_1 2) If S—07,dS/dt >0 ;u=0, then
as  —gom1 ( 92 ) 92Viet
— = - > 0.
@~ o T\ Re)™T o
A
80 :
Fig. 1. Sliding mode controlled buck converter. 40 EXIS Teglon :
voltage. Substitution of the behavioral model of buck cotere §
into (1) gives the system dynamical equation as 0 ;
diUl :
— = x T
dt ? g
dIQ 1 1 ‘/rcf ‘/1 -40 |
— = ——I — — — . 2 ;
at e " me2t e " ev @ g
In state-space model, it can also be expressed as
dx -80 i
i Ax + Bu+ D 3) -30 10 20 3(
where
4 ( 0 1 ) ( 0 ) Fig. 2. Trajectory of SM controlled buck converter showitg tswitching
= , B= , and sliding motion. The parameter values dre= 2.5mH, C = 32uF,
-1/LC —1/RC —Vin/LC R =150, Vi, = 28V, Vies = 12V, g1 = 10, go — 0.005, and A = 0.2.
D= ( OLC’ ), T = ( o1 ) ) In other word, one can express these reachability condition
Viet/ T2 or the regions of existence as
and V4, is the input voltage with discontinuous control input v Vi
) 0<—g—29€1+(g1—£) x2+92 ref < g2 1n. (7)
1 if S<—-A/2 LC RC LC LC
u = Ueg 1T —A/2< S < +A/2 (4) Once the trajectory reacheS and reachability conditions

0 if S > +A/2 (7) hold, the ideal sliding motion starts, and the trajegtor
following the reduced order dynamics

to drive the power switcld). The objective of this control logic da

is that regardless of the starting positio(D), the controller d_t2 —(g1/g2)r2 =0 (8)

will perform a control decision that will drive the system _ _
trajectory on either side of the switching surface will be asymptotically stable. The system will be globally
stable for any intial position:(0), if there existsts > 0.

S=g1x1+ gor2 =Gr =0 (5) However, if the reachability condition does not hold, it can
where G = [g1 go], to converge to it, for alt > 0. The be shown that after successive finite number of switchings th

trajectory is then said to be in sliding mode if the motioh€achability condition must be satisfied [4].
within a small vicinity around the surfacgs: —A/2 < S < In Fig. 2, an example trajectory of SM controlled buck
+A/2} is maintained, and consequently directed toward tfR@nVverter is shown, where without satisfying the existence
equilibrium point. In other words, it can be said that the sifondition, the trajectory starting from an initial point0) =
controller is performing its control decision by utilizintge (18, —6.3830 x 10%) is intersecting by the switching mani-
sliding plane as a reference path, on which the trajectotly wiold S = 0 at time¢=t, (wheret, >0). Once the existence
track and eventually converge to the origin to achieve gdsircondition is satisfied just after first intersection, a slgli
steady-state operation satisfying the inequality coodi motion starts and trajectory approaches to the equilibrium
point x(¢t;) ~ 0 along the sliding line with a very high
lim s <0 and lim a5 >0 (6) switching frequency as shown in Fig. 3. The frequency of
s—ot dt 5—0- dt switching operation are normally fixed, and controlled by
when A — 0. Here, the conditions (6) are called the slidingarying the width of the hysteresis band. However, this
modereachability conditionor existence conditiongl], [18]. way of switching frequency fixation makes the state function



1208 B. Discretization of SM Control
; ; _ Let us now investigate the effect of discretization of egquiv
§ : 5 signal v is generated by comparing switching functich
£ 12,04 it N sampled over the time intervdl with a zero reference value.
z : : This can be implemented by using a comparator used as a
><2| 730 (AR SRS HERR ST o AR zero Crossing deteCtOI‘ fo”OWed by a Sample_and_Hold (S/H)
; ; ; _ circuit. The S/H circuit is one of the main functional block i
120 . a” dlgltal Signal processors Causing the tlme delay in mjnt
: : : circuit. Due to this internal time delay, the control signal

-12.8 -128 -12.4 -12.8 -12 -11.9¢ for the time interval(t,,, ¢y +1), wheret, 1, = (n +1)T" and
T is the sampling interval. Based on (10) and (11), we can

X1 (V .
1 (V) write these as
Fig. 3. Trajectory showing the high and low frequency congrds along the 4
sliding surface. Dots indicate the switching instants om bloundary layers. Uegn = —(GB)” (GAz, +GD) (12)
All parameter values are same as in Fig. 2. 1 1
Uspy = —E(GB)* (1+sgnSy)). (12)
discontinuous across = GTz = 0, therefore, violets
the existence and unigueness of the solution of system (3).
Fillipov's method and Utkin's equivalent control concepivie T

been successfully used to overcome this problem. The main
concept behind such methods [2] is that in the vicinity of th Vin
sliding surface, motion velocity vector is always tangehtd

the sliding surface, and the resulting dynamics

u
%:Ax—l—Bueq—i—D (9) =

is only governed by a smooth control law= u., without any
discontinuity. Unfortunately, it only serves as a mathaoaht
description of such motion, but impossible to implement in
real-life applications. A lot of control algorithms employ
equivalent control as a component of the real control, which
usually defined as a composition of two isolated components=- - - - - - - - -==0__
U = Ueq + us @S shown in Fig. 3.

Although, the motion of trajectory is defined by the com
position of two components: € (ueq,us) With different
time-scale, the slow-moving (low-frequency) componen Moreover, during the tim@&", the inter-sample motion will
is responsible for the continuous trajectory that followe t deviate from sliding hypersurfacg, = 0, and chatter within

desired reduced order dynamic behavior after the slidindemog specific band is called the QSM band (see Fig. 4), defined
starts, and which can be easily derived from (8) and (Qy

satisfyingdz/dt = 0 as

Fig. 4. Schematic of discretized SM controlled buck corerert

{=6 < Sp(xn, T) < +0} (13)
Ueq = —(GB) ! [GAz + GD] (10)
where(GB)~! # 0. Substitutingu,, into (9) yields the slow- Whered is a function ofz, andT. Wheng — 0, the QSM
scaled dynamical equation controller becomes an ideal SM controller. Theoreticéilis i
da only possible when sampling interval tini¢ — 0. For the
i (A— B(GB)"'GA)z — B(GB)"'GD+ D =0 practical parameter values=2.5 mH, C=32 uF, R=15 (,
t Vin=26 V, Vier=12 V, ¢1=1, 92=0.001, andT'=10 usec, the

whose roots determine the asymptotic stability of the sgste .o verter is globally stable fof > 0 as shown in Fig. 5.

If the roots are in left-half ofs-plane, then the system iSqpce he trajectory enters into the existence regions, uhsig
stable. Whereas the high frequency componentforces gjiging motion starts and moves toward the quasi-equiliri
the trajectory to move alternatively betweerve and —ve  noint “Therefore, from equivalent SM control law, one could

direction of5' = 0 in such a way that just after every switching,, ye ot that the system will be asymptotically stable, if the
events, trajectory always points towards the switching IManigenvalues of the closed system, given by
fold, governed by discontinuous switching law '

1 1 0if S<0 AT T Ar
uS:—Q(GB) (1+sgnS)) where sghS) = 1ifS>0° Tpy1 = €7 x,+ e”" (Bup, + D)dr  (14)
0



by the fixed pointsz’ = (I — ®)~}T + II) and =}, =

(I — ®)~%T — II) respectively. However, with switching
involved in the system the dynamical behavior becomes much
more complex. As an example, the discretized switching
function dynamicsS,, of the SM controlled buck converter
is shown in Fig. 6. As the system statg, evolves, the
function sgn(S,,) forms a sequence of binary value -1 and
+1. After the initial transient, once the system trajectigy
eventually attracted by the trapped region in finite time, it
stays within a bounded region followed by a fast-scale micio
orbit with different periodicities. Fig. 7 shows the typica
examples of period-2, period-5, and aperiodic trajectary i
discrete-time domain at different input voltages 24.5V,53]1
and 28.1V respectively. The occurrence and existence &f suc

X2 (V/Imsec)

~18 -16 -14 -12 -10 -8 -6 -4 -2 (
X1 (V)
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N
T

Fig. 5. Trajectory evolution of discretized SM controlledck converter
with sampling time intervall’'=10usec. The other parameters value afe =
2.5mH, C = 32uF, R = 159, Viy = 26V, Vi = 12V, g1 = 1, and

=
o

&
o
g Eh
g2 = 0.001. Dots indicate the sampled value of switching functiSrover 2
time interval T'. @ 87
._g
£ 6t ‘ ‘ ‘ ‘
or, % Sh=0
D 4r 1
T N
Tpy1 = AT — B(GB)_lGA/ eATdT] T g ol ’ \
0 ]
T TP
(I - B(GB)*G)/ ATDdr (15) ort-th MM MW mm W W ﬂ M
0 -2 | | | | 1 | | |
are within the unit circle Wheran = Ueg,n- 0 50 100 150 200 250 300 350 400 450 500
However, due to fast-moving control component,, the Time (U sec)

system will not be asymptotically stable, i.e., the staenidt S o _ _ _
t Fig. 6. A representative discretized switching functiomalyics showing

_‘?O”VGrge to _zero in finite time. It will force the t_raje_CtOW the period-16 orbit in steady state condition. The pararsetalue are same
jitter alternatively between two halves of the switchingup as in Fig. 5.

S, = 0, and makes the system oscillatory. The dynamics
around the switching surface can be then derived by substitkind of complex behaviors are quite different from the be-
ing (12) into (14), and equating slowly moving component thaviors observed in two-dimensional (2-D) piecewise simoot

zero, as (PWS) continuous maps, which can be however successfully
T explained by recently developed bifurcation theory for 2-D
Tpp1 = eAT:vn—i—/ e Ddr PWS discontinuous maps [19].
0
1 1 r Ar [1l. COMPLEX BEHAVIORS OFDISCRETIZEDSM
_§(GB) (1+ sgr(Sn))/O ™" Bdr. CONTROLLED BUCK CONVERTER

In compact form, it can also be written as Let us now examine the effect of this discontinuity on
> r ifs the system’s bifurcation behavior. In order to understdred t
" _ Tn + it Sn <0 (16) bifurcation of (16), one has to obtain eigenvalues of thedfixe

s bz, +T -1 if S, >0 points at the two sides of the_ borderline, and from tha}t, the

value of trace and the determinant. Here, the explanatibns o

where . the observed bifurcation have to be obtained by analysiag th
AT _ Ar PWS discontinuous maps of (16) in the neighborhood of the
e = 1“_/0 e Ddr, borderline

T .
Jrx, + T +11 if S, <0
1 Ar n ) n
II = (GB) A e“"Bdr and Sn = G:Cn. Tt (] 7)

. . . Jrr, + T —1I, otherwise

The equation (16) represents a hybrid dynamical system RIn +
switching between two discrete-time invariant linear syss  Where

with two different equilibrium points. For autonomous par O(Px, + T +1I)

B O(Px, + T —1I)
of the systems, eventually the trajectory will be attracted” ox

y YR O

xT*

=P

T*
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Fig. 7. Examples of: (a) period-2, (b) period-5, and (c) aubc trajectory in discrete domain. The correspondinguingoltagesV;,, are 24.5V, 31.5V, and
18.1V respectively.
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are the Jacobian matrice of the system at a fixed point af the period-1 and period-2 fixed point was reported earlier
L= {zeR?:S,<0}andinR=: {z} € R2:S, >0} in [20]. In this paper, we apply those concepts to facilitate
respectively. The normal form (17) follows from that dedvethe understanding of the complex dynamics of discretized
for PWS continuous maps, with discontinuityI2The fixed SM controlled buck converter. Since there exists no petiod-
point of the system (17)) on both the side of the boundaaftractor in this system, here, we will consider the exicteof

S, =0arex; = (I—®) " (I'+1I) andz} = (I —®)" ('~ period-2 attractor only. It is possible to show the conditio
I0). If 23 =: {S7 <0} condition holds, the fixed point exists.of the existence of period-2 fixed points of 2-D maps. The
Else it does not. However, far; =: {S7 <0}, iteration from detail analysis is not shown here. However, since the system
initial conditions in left half are influenced by the nonegist is linear in each side of the border, period-2 (or higher)dixe
fixed point, which is called virtual fixed point, and denotsd bpoints can not exist with all points ik or all points R. In

z3 . Similarly, when the conditior}, =: {S}, >0} is fulfilled, some regions of parameter space, a period-2 fixed point may
the fixed point exist; else it is virtual fixed point denoted bgxist with one point inL and one point inR.

T%. In this case, both sides fixed point$ =(12.0 0)” and

7% =(—12.0 0)T are virtual attractors. Thus, any initial state 100
in the L is drawn towards the virtual attracto}, situated inR. 90
However as soon as it cross the borderliie= 0, it is drawn &
back toward the virtual attractary, situated inL. The state @ go
therefore locked between the two virtual fixed attractord ang Period-2 redion
that results a bounded orbit coexisting with multiple atioas. 0 9
The same behavior is exhibited by an initial stateinThis S ¢, - o
closed orbit will be then high periodic or chaotic orbits. & Condition for border—collision
£ 5o
4 2
< 3. 19 17 E’ 40
b ) 1917151311 9 7 \ \ 5 g 30
5 RN JUNE F U
e M s R N~
21 Se N 20
S 0 : QS\%“\:H:Z::\H -~
£ SEENTS S5 == 10
= : ﬁ S 0 24 25 26 27 28 29 30 31 32 3¢
] 3 e S 2 — 3
= ~ NS\%; S e Input voltageV, (V)
a ol S SRR g =T
£ Borderline T = = g , . . . o
G ig. 9. The domains of existence of different oscillatorydes inV;, — T’
0 -3t 20 16 12 parameter spacf24 < Vi, < 33;10 < T < 100}. The parameter values
are taken same as in Fig. 8. Here, numbers indicate the derofiexistence
-4 : : : : : : : : of those periodic orbits and the unmarked domains repregshetregions of
24 25 26 27 28 29 30 31 32 33 aperiodic behavior or periodicities higher than 13.
Input voltage (V)
Here, we observe that the set of bifurcation curves of these
Fig. 8.  Bifurcation diagram of discretized SM controlledckuconverter maps give a structure, which are different from the PWS

showing the periodic orbit with different periodicities @V}, is varied from
24 to 33V. The other parameters ate:= 2.5mH, C' = 32uF, R = 1542,
Viet = 12V, g1 = 1, g2 = 0.001, T=10usec.

continuous maps. As an example, a representative biforcati
diagram is shown in Fig. 8. It has been seen that the equiv-
alent SM controlled buck converter exihibits stable pet2od

Among these closed orbits, the condition of the existenogeration when it operates at input voltage less than 2559V



the input voltageli, increases further through, = 25.59V,
the period-2 orbit vanishes through border-collision tifiion
and a high periodic orbit, for example, period-19 havingjlO
symbolic sequencé& RL... with period increment and Faray
tree sequence comes into existence. With further increment
of Vi,, the symbolic sequence gets reversed, i.e., the symhqh
sequenceRLR... comes into existence.

This property can be easily conjectured even by a quitk]
numerical computation and graphical representation of the
regions of existence of stable cycles of different periodg3]
In fact, for any value of the discontinuity, the numericalliw
computed 2-D bifurcation diagram in the parameter plane
[Vin,T] has a certain structure (see Fig. 9), where each
colored region corresponds to a cycle of fixed period acogrdil°]
to the numbers reported in the picture. Such regions are
usually called periodicity regions (or periodicity tongugue [16]
to their shape [21]). Moreover, for parameters belonging to
the boundary of a periodicity region a border-collision wsc
involving the cycles existing inside the region.

El

[17]

IV. CONCLUSION
[18]

To restrict the switching frequency within a practical rang
the realization of Utkin’s equivalent control law is norryal [19]
achieved by using boundary layers controller or QSM con-
troller. In this paper, we have shown that the SM controller
implemented in the digital platform are inherently a QSNRO]
controller, therefore, amenable to the same treatment.ave h
also investigated the discretization effects of SM coigrah
the DC-DC buck converters. It is seen that, the dynamicsmundet]
this control schemes can be successfully modeled by the 2-D
discontinuous maps reported earlier. Based on the nunherica
simulations, we have also shown the domain of existence of
different periodic orbits and their occurrence int§, — T
parameter space, which are quite different from bifureatio
behaviors obtained from 2-D PWS continuous maps. The
deeper understanding of such behaviors and their physical
importance in real-life applications however will be dissad
in future.
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