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Abstract—In this paper, we study the application of discretiza-
tion of equivalent SM controller in DC-DC buck converters.
Based on this control logic, we derive the two-dimensional (2-
D) piecewise smooth (PWS) discontinuous map of the converter
system. Some inherent dynamical properties of system’s steady-
state behaviors (i.e., the bifurcation behaviors) are alsostudied.
The presented one- and two-parameter bifurcation digrams show
the domains of existence of different oscillatory modes andtheir
sequence of occurrence of the converter system, which are quite
different from the bifurcation behaviors observed in 2-D PWS
continuous maps [1].

Index Terms—Sliding mode (SM) control, digital sliding mode
controller, DC-DC converter, 2-dimensional piecewise smooth
(PWS) discontinuous map, complexity.

I. I NTRODUCTION

The sliding mode (SM) controller is well known for its
robustness and guaranteed stability under parameter variations
and external perturbations [2], [3]. Inspite of these unique
advantages, it is practically impossible to implement the ideal
SM controller for real-life variable structure power electronics
systems. Ideally, the SM controller operates at infinite switch-
ing frequency, so that, the controlled variables can track the
switching surface to achieve the desired dynamic response and
steady state system operation [4]. This typical requirement
results in excessive switching losses, inductor and transformer
core losses, and electromagnetic interference (EMI) noise, and
thereby, challenges the feasibility of applying SM controller
in real-life applications.

One way to constrict this infinite switching frequency
within a practical range is by incorporating the boundary
layers around the sliding surface. Over the past decade,
numerous control techniques, such as, bang bang control [5],
[6], adoptive hysteresis control [7], [8], and fixed frequency
control [9], [10] have been reported. In most of the cases, the
SM controllers are implemented in analog domain, and the
switching frequency has been restricted by using the concepts
of hysteresis-modulation (HM) or delta-modulation technique.
Once the SM controller is implemented for real systems, it
is then transformed into a finite switching quasisliding-mode
(QSM) controller. The proximity of QSM controller will be
closer to the ideal one, if the switching frequency tends toward
infinity.

However, the implementation of SM controllers in digital
platforms also allows the fixed frequency switching opera-
tion. Because of the existence of a QSM band around the
switching surface [11], [12], such controllers inherentlywork
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like a boundary layered SM controller, and which can be
used successfully to eliminate the chattering [12] accross
the switching manifold. However, since the trajectory after
intersecting the switching manifold leaves this manifold,the
invariance property enjoying in a continuous SM control
may deteriorate drastically. Studies on this subject have been
reported recently, where the investigations are normally based
on two distinct approaches. One is the discrete-time sliding
mode control approach [13], [14], and other is the direct
discretization of equivalent SM control using Zero-Order-
Hold (ZOH) circuit [15]. The use of ZOH circuits however
show various kinds of irregularities including subharmonic
oscillations, chaos, and coexisting attractor in a simple 2-
dimensional (2-D) system [15], [16], [17]. In order to evaluate
such quantitative discretization behaviors and to developthe
preventive measures for these unwanted behaviors, it is there-
fore of practical importance to study the discretization effect
of SM controllers.

In this paper, we apply the discretized equivalent SM
controller in DC-DC converter and some inherent dynamical
properties are studied. The system steady-state behaviorsare
discussed using the 2-D discontinuous maps. Lower bounds
of sampling interval of the ZOH circuit is also obtained
numerically.

II. EQUIVALENT CONTROL BASEDSM CONTROLLED

BUCK CONVERTER AND ITS DIGITAL REALIZATION

The SM controller provides an averaged control law [18]
to necessarily maintain the state trajectory on the sliding
manifold. However, the discretized models of the actual dy-
namical systems may have some properties different from the
original one. For instance, for a differential equation having a
periodic orbit, its discretized system does not necessarily have
a corresponding periodic orbit. On the other hand, for a well-
behaved continuous-time system with no periodic oscillations,
may have periodic behaviors once it is discretized. Here, we
discuss this with an example of power electronics converter.

A. SM Controlled Buck Converter in Continuous-time Domain

For a SM controlled converter under continuous conduction
mode (CCM) of operation (see Fig. 1), the general control
variables can be defined as

x1 = Vref − v

x2 =
dx1

dt
= −

dv

dt
= −

i

C
+

v

RC
(1)

whereC is the capacitance,L is the inductance,R is the load
resistance,i is the inductor current, andv is the capacitor



2

_
+

L

R

i
Vin

C

+
v

−

+

− Vref

+−

x1

i v

+

+

u

1/C

+∆/2

1/RC

x2

D

Q

g

g

2

1

u

−∆/2
S

S

1

Fig. 1. Sliding mode controlled buck converter.

voltage. Substitution of the behavioral model of buck converter
into (1) gives the system dynamical equation as

dx1

dt
= x2

dx2

dt
= −

1

LC
x1 −

1

RC
x2 +

Vref

LC
−

Vin

LC
u. (2)

In state-space model, it can also be expressed as

dx

dt
= Ax + Bu + D (3)

where

A =

(

0 1
−1/LC −1/RC

)

, B =

(

0
−Vin/LC

)

,

D =

(

0
Vref/LC

)

, x =

(

x1

x2

)

,

andVin is the input voltage with discontinuous control input

u =











1 if S < −∆/2

ueq if −∆/2 < S < +∆/2

0 if S > +∆/2

(4)

to drive the power switchQ. The objective of this control logic
is that regardless of the starting positionx(0), the controller
will perform a control decision that will drive the system
trajectory on either side of the switching surface

S = g1x1 + g2x2 = Gx = 0 (5)

where G = [g1 g2], to converge to it, for allt > 0. The
trajectory is then said to be in sliding mode if the motion
within a small vicinity around the surface{S: −∆/2 < S <
+∆/2} is maintained, and consequently directed toward the
equilibrium point. In other words, it can be said that the SM
controller is performing its control decision by utilizingthe
sliding plane as a reference path, on which the trajectory will
track and eventually converge to the origin to achieve desired
steady-state operation satisfying the inequality conditions

lim
S→0+

dS

dt
< 0 and lim

S→0−

dS

dt
> 0 (6)

when ∆ → 0. Here, the conditions (6) are called the sliding
modereachability conditionsor existence conditions[4], [18].

For an ideal SM controlled buck converter, these conditions
can be easily derived from (5) and (6), as

1) If S → 0+, dS/dt < 0 ; u = 1, then

dS

dt
=

−g2x1

LC
+

(

g1−
g2

RC

)

x2 − g2

[

Vin

LC
−

Vref

LC

]

< 0

2) If S → 0−, dS/dt > 0 ; u = 0, then

dS

dt
=

−g2x1

LC
+

(

g1−
g2

RC

)

x2+
g2Vref

LC
> 0.
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Fig. 2. Trajectory of SM controlled buck converter showing the switching
and sliding motion. The parameter values areL = 2.5mH, C = 32µF,
R = 15Ω, Vin = 28V, Vref = 12V, g1 = 10, g2 = 0.005, and∆ = 0.2.

In other word, one can express these reachability conditions
or the regions of existence as

0 < −
g2

LC
x1 +

(

g1 −
g2

RC

)

x2 +
g2Vref

LC
<

g2Vin

LC
. (7)

Once the trajectory reachesS and reachability conditions
(7) hold, the ideal sliding motion starts, and the trajectory
following the reduced order dynamics

dx2

dt
− (g1/g2)x2 = 0 (8)

will be asymptotically stable. The system will be globally
stable for any intial positionx(0), if there existsts > 0.
However, if the reachability condition does not hold, it can
be shown that after successive finite number of switchings the
reachability condition must be satisfied [4].

In Fig. 2, an example trajectory of SM controlled buck
converter is shown, where without satisfying the existence
condition, the trajectory starting from an initial pointx(0)=
(−18,−6.3830× 104) is intersecting by the switching mani-
fold S = 0 at time t = ts (wherets > 0). Once the existence
condition is satisfied just after first intersection, a sliding
motion starts and trajectory approaches to the equilibrium
point x(tf ) ≈ 0 along the sliding line with a very high
switching frequency as shown in Fig. 3. The frequency of
switching operation are normally fixed, and controlled by
varying the width of the hysteresis band∆. However, this
way of switching frequency fixation makes the state function
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Fig. 3. Trajectory showing the high and low frequency components along the
sliding surface. Dots indicate the switching instants on the boundary layers.
All parameter values are same as in Fig. 2.

discontinuous acrossS = GT x = 0, therefore, violets
the existence and uniqueness of the solution of system (3).
Fillipov’s method and Utkin’s equivalent control concept have
been successfully used to overcome this problem. The main
concept behind such methods [2] is that in the vicinity of the
sliding surface, motion velocity vector is always tangential to
the sliding surface, and the resulting dynamics

dx

dt
= Ax + Bueq + D (9)

is only governed by a smooth control lawu = ueq without any
discontinuity. Unfortunately, it only serves as a mathematical
description of such motion, but impossible to implement in
real-life applications. A lot of control algorithms employ
equivalent control as a component of the real control, whichis
usually defined as a composition of two isolated components
u = ueq + us as shown in Fig. 3.

Although, the motion of trajectory is defined by the com-
position of two componentsu ∈ (ueq, us) with different
time-scale, the slow-moving (low-frequency) componentueq

is responsible for the continuous trajectory that follows the
desired reduced order dynamic behavior after the sliding mode
starts, and which can be easily derived from (8) and (9),
satisfyingdx/dt = 0 as

ueq = −(GB)−1 [GAx + GD] (10)

where(GB)−1 6= 0. Substitutingueq into (9) yields the slow-
scaled dynamical equation

dx

dt
=

(

A − B(GB)−1GA
)

x − B(GB)−1GD + D = 0

whose roots determine the asymptotic stability of the system.
If the roots are in left-half ofs-plane, then the system is
stable. Whereas the high frequency componentus forces
the trajectory to move alternatively between+ve and −ve
direction ofS = 0 in such a way that just after every switching
events, trajectory always points towards the switching mani-
fold, governed by discontinuous switching law

us =−
1

2
(GB)−1 (1+sgn(S)) where sgn(S)=

{

0 if S < 0
1 if S > 0

.

B. Discretization of SM Control

Let us now investigate the effect of discretization of equiv-
alent SM controller in buck converter. In Fig. 4, the switching
signal u is generated by comparing switching functionS
sampled over the time intervalT with a zero reference value.
This can be implemented by using a comparator used as a
zero crossing detector followed by a Sample-and-Hold (S/H)
circuit. The S/H circuit is one of the main functional block in
all digital signal processors causing the time delay in control
circuit. Due to this internal time delay, the control signal
un = ueq,n + us,n at the momenttn = nT will be constant
for the time interval(tn, tn+1), wheretn+1 = (n + 1)T and
T is the sampling interval. Based on (10) and (11), we can
write these as

ueq,n = −(GB)−1(GAxn + GD) (11)

us,n = −
1

2
(GB)−1(1 + sgn(Sn)). (12)
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Fig. 4. Schematic of discretized SM controlled buck converter

Moreover, during the timeT , the inter-sample motion will
deviate from sliding hypersurfaceSn = 0, and chatter within
a specific band is called the QSM band (see Fig. 4), defined
by

{−δ ≤ Sn(xn, T ) ≤ +δ} (13)

whereδ is a function ofxn and T . When δ → 0, the QSM
controller becomes an ideal SM controller. Theoretically it is
only possible when sampling interval timeT → 0. For the
practical parameter valuesL=2.5 mH, C=32 µF, R=15 Ω,
Vin=26 V, Vref=12 V, g1=1, g2=0.001, andT=10 µsec, the
converter is globally stable fort > 0 as shown in Fig. 5.
Once the trajectory enters into the existence regions, the quasi-
sliding motion starts and moves toward the quasi-equilibrium
point. Therefore, from equivalent SM control law, one could
expect that the system will be asymptotically stable, if the
eigenvalues of the closed system, given by

xn+1 = eAT xn +

∫ T

0

eAτ (Bun + D) dτ (14)
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Fig. 5. Trajectory evolution of discretized SM controlled buck converter
with sampling time intervalT=10µsec. The other parameters value are :L =
2.5mH, C = 32µF, R = 15Ω, Vin = 26V, Vref = 12V, g1 = 1, and
g2 = 0.001. Dots indicate the sampled value of switching functionS over
time intervalT .

or,

xn+1 =

[

eAT − B(GB)−1GA

∫ T

0

eAτdτ

]

xn

+(I − B(GB)−1G)

∫ T

0

eAτDdτ (15)

are within the unit circle whereun = ueq,n.
However, due to fast-moving control componentus,n the

system will not be asymptotically stable, i.e., the states do not
converge to zero in finite time. It will force the trajectory to
jitter alternatively between two halves of the switching plane
Sn = 0, and makes the system oscillatory. The dynamics
around the switching surface can be then derived by substitut-
ing (12) into (14), and equating slowly moving component to
zero, as

xn+1 = eAT xn+

∫ T

0

eAτDdτ

−
1

2
(GB)−1(1 + sgn(Sn))

∫ T

0

eAτBdτ.

In compact form, it can also be written as

xn+1 =

{

Φxn + Γ if Sn < 0

Φxn + Γ − Π if Sn > 0
(16)

where

Φ = eAT , Γ =

∫ T

0

eAτDdτ,

Π = (GB)−1

∫ T

0

eAτBdτ and Sn = Gxn.

The equation (16) represents a hybrid dynamical system
switching between two discrete-time invariant linear systems
with two different equilibrium points. For autonomous part
of the systems, eventually the trajectory will be attracted

by the fixed pointsx∗

n = (I − Φ)−1(Γ + Π) and x∗

n =
(I − Φ)−1(Γ − Π) respectively. However, with switching
involved in the system the dynamical behavior becomes much
more complex. As an example, the discretized switching
function dynamicsSn of the SM controlled buck converter
is shown in Fig. 6. As the system statexn evolves, the
function sgn(Sn) forms a sequence of binary value -1 and
+1. After the initial transient, once the system trajectoryis
eventually attracted by the trapped region in finite time, it
stays within a bounded region followed by a fast-scale periodic
orbit with different periodicities. Fig. 7 shows the typical
examples of period-2, period-5, and aperiodic trajectory in
discrete-time domain at different input voltages 24.5V, 31.5V,
and 28.1V respectively. The occurrence and existence of such
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Fig. 6. A representative discretized switching function dynamics showing
the period-16 orbit in steady state condition. The parameters value are same
as in Fig. 5.

kind of complex behaviors are quite different from the be-
haviors observed in two-dimensional (2-D) piecewise smooth
(PWS) continuous maps, which can be however successfully
explained by recently developed bifurcation theory for 2-D
PWS discontinuous maps [19].

III. C OMPLEX BEHAVIORS OFDISCRETIZEDSM
CONTROLLED BUCK CONVERTER

Let us now examine the effect of this discontinuity on
the system’s bifurcation behavior. In order to understand the
bifurcation of (16), one has to obtain eigenvalues of the fixed
points at the two sides of the borderline, and from that, the
value of trace and the determinant. Here, the explanations of
the observed bifurcation have to be obtained by analysing the
PWS discontinuous maps of (16) in the neighborhood of the
borderline

xn+1 =







JLxn + Γ + Π, if Sn <0

JRxn + Γ − Π, otherwise
(17)

where

JL =
∂(Φxn + Γ + Π)

∂x

∣

∣

∣

∣

x∗

=Φ, JR =
∂(Φxn + Γ − Π)

∂x

∣

∣

∣

∣

x∗

=Φ
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Fig. 7. Examples of: (a) period-2, (b) period-5, and (c) aperiodic trajectory in discrete domain. The corresponding input voltagesVin are 24.5V, 31.5V, and
18.1V respectively.

are the Jacobian matrice of the system at a fixed point in
L =: {x∗

n ∈ ℜ2 : Sn < 0} and in R =: {x∗

n ∈ ℜ2 : Sn > 0}
respectively. The normal form (17) follows from that derived
for PWS continuous maps, with discontinuity 2Π. The fixed
point of the system (17)) on both the side of the boundary
Sn = 0 arex∗

L = (I −Φ)−1(Γ+Π) andx∗

R = (I −Φ)−1(Γ−
Π). If x∗

L =: {S∗

L <0} condition holds, the fixed point exists.
Else it does not. However, forx∗

L =: {S∗

L <0}, iteration from
initial conditions in left half are influenced by the nonexistent
fixed point, which is called virtual fixed point, and denoted by
x̄∗

L. Similarly, when the conditionx∗

R =: {S∗

R >0} is fulfilled,
the fixed point exist; else it is virtual fixed point denoted by
x̄∗

R. In this case, both sides fixed pointsx̄∗

L =(12.0 0)T and
x̄∗

R =(−12.0 0)T are virtual attractors. Thus, any initial state
in theL is drawn towards the virtual attractorx̄∗

L situated inR.
However as soon as it cross the borderlineSn = 0, it is drawn
back toward the virtual attractor̄x∗

R situated inL. The state
therefore locked between the two virtual fixed attractors and
that results a bounded orbit coexisting with multiple attractors.
The same behavior is exhibited by an initial state inR. This
closed orbit will be then high periodic or chaotic orbits.
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Among these closed orbits, the condition of the existence

of the period-1 and period-2 fixed point was reported earlier
in [20]. In this paper, we apply those concepts to facilitate
the understanding of the complex dynamics of discretized
SM controlled buck converter. Since there exists no period-1
attractor in this system, here, we will consider the existence of
period-2 attractor only. It is possible to show the conditions
of the existence of period-2 fixed points of 2-D maps. The
detail analysis is not shown here. However, since the system
is linear in each side of the border, period-2 (or higher) fixed
points can not exist with all points inL or all pointsR. In
some regions of parameter space, a period-2 fixed point may
exist with one point inL and one point inR.
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aperiodic behavior or periodicities higher than 13.

Here, we observe that the set of bifurcation curves of these
maps give a structure, which are different from the PWS
continuous maps. As an example, a representative bifurcation
diagram is shown in Fig. 8. It has been seen that the equiv-
alent SM controlled buck converter exihibits stable period-2
operation when it operates at input voltage less than 25.59V. If
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the input voltageVin increases further throughVin = 25.59V,
the period-2 orbit vanishes through border-collision bifurcation
and a high periodic orbit, for example, period-19 having
symbolic sequenceLRL... with period increment and Faray
tree sequence comes into existence. With further increment
of Vin, the symbolic sequence gets reversed, i.e., the symbol
sequenceRLR... comes into existence.

This property can be easily conjectured even by a quick
numerical computation and graphical representation of the
regions of existence of stable cycles of different periods.
In fact, for any value of the discontinuity, the numerically
computed 2-D bifurcation diagram in the parameter plane
[Vin, T ] has a certain structure (see Fig. 9), where each
colored region corresponds to a cycle of fixed period according
to the numbers reported in the picture. Such regions are
usually called periodicity regions (or periodicity tongues due
to their shape [21]). Moreover, for parameters belonging to
the boundary of a periodicity region a border-collision occurs
involving the cycles existing inside the region.

IV. CONCLUSION

To restrict the switching frequency within a practical range,
the realization of Utkin’s equivalent control law is normally
achieved by using boundary layers controller or QSM con-
troller. In this paper, we have shown that the SM controller
implemented in the digital platform are inherently a QSM
controller, therefore, amenable to the same treatment. We have
also investigated the discretization effects of SM controller in
the DC-DC buck converters. It is seen that, the dynamics under
this control schemes can be successfully modeled by the 2-D
discontinuous maps reported earlier. Based on the numerical
simulations, we have also shown the domain of existence of
different periodic orbits and their occurrence intoVin − T
parameter space, which are quite different from bifurcation
behaviors obtained from 2-D PWS continuous maps. The
deeper understanding of such behaviors and their physical
importance in real-life applications however will be discussed
in future.

REFERENCES

[1] S. Maity, D. Tripathy, T. K. Bhattacharya, and S. Banerjee, “Bifurcation
analysis of PWM-1 voltage-mode controlled buck converter using the
exact discrete model,”IEEE Transactions on Circuits and Systems-I,
vol. 54, no. 5, pp. 1120–1130, May 2007.

[2] V. Utkin, J. Guldner, and J. X. Shi,Sliding Mode Control in Electro-
mechanical Systems. London, U.K: Taylor & Francis, 1999.

[3] W. Gao and J. C. Hung, “Variable structure control of nonlinear systems:
A new approach,”IEEE Transactions on Inductrial Electronics, vol. 40,
no. 1, pp. 45–55, February 1993.

[4] C. Edwards and S. K. Spurgeon,Sliding Mode Control: Theory and
Applications. London, U.K: Taylor & Francis, 1998.

[5] M. Carpita and M. Marchesoni, “Experimental study of a power condi-
tioning system using sliding mode control,”IEEE Transactions on Power
Electronics, vol. 11, no. 5, pp. 731–742, September 1996.

[6] V. M. Nguyen and C. Q. Lee, “Indirect implementations of sliding-mode
control law in buck-type converters,”Applied Power Electronics Conf.
and expo.(APEC), vol. 1, pp. 111–115, March 1996.

[7] H. Sira-Ramirez, “Sliding modeδ-modulation control of a buck con-
verter,” in Proc.42nd IEEE Conference on Decision and Control, vol. 3,
pp. 2999–3004, December 2003.

[8] S. C. Tan, Y. M. Lai, C. K. Tse, and M. K. H. Cheung, “Adaptive
feed-forward and feedback control schemes for sliding modecontrolled
power converters,”IEEE Transactions on Power Electronics, vol. 21,
no. 1, pp. 182–192, January 2006.

[9] S. K. Mazumder and S. L. Kamisetty, “Experimental validation of a
novel multiphase nonlinear vrm controller,”IEEE Power electronics
specialists conferenc, vol. 3, pp. 2114–2120, 2004.

[10] S. C. Tan, Y. M. Lai, C. K. Tse, and M. K. H. Cheung, “A fixed
frequency pulsewidth modulation based quasi-sliding-mode controller
for buck converters,”IEEE Transactions on Power Electronics, vol. 20,
no. 6, pp. 1379–1392, November 2005.

[11] K Furuta, “Sliding mode control of a discrete system,”Systems &
Control Letters, vol. 14, no. 2, pp. 145–152, February 1990.

[12] W. Gao, Y Wang, and A Homaifa, “Discrete-time variable structure
control systems,”IEEE Transactions on Inductrial Electronics, vol. 42,
no. 2, pp. 117–122, April 1995.

[13] C. Milosavljevic, ”Discrete-time VSS” in Variable structure System:
From Theory to Applications. London, U.K: IEE Press, 2004, vol. 66.

[14] A. Jafari Koshkouei and A. S. I. Zinober, “Sliding mode control of
discrete-time systems,”Journal of Dynamic Systems, Measurement, and
Control, vol. 122, no. 4, pp. 793–802, December 2000.

[15] Z. Galias and X. Yu, “Analysis of zero-order holder discretization of
two-dimensional sliding-mode control systems,”IEEE Transactions on
Circuits and Systems-II, vol. 55, no. 12, pp. 1269–1273, December 2008.

[16] X. Yu, B. Wang, Z. Galias, and G. Chen, “Discretization effect on
equivalent control based multi-input sliding mode controlsystems,”
IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1563–1569,
July 2008.

[17] B. Wang, X. Yu, and G. Chen, “ZOH discretization effect on single-input
sliding mode control systems with matched uncertainties,”Automatica,
vol. 45, no. 1, pp. 118–125, January 2009.

[18] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE
Transactions on Automatic Control, vol. 22, no. 2, pp. 212–222, 1977.

[19] B. Rakshit, M. Apratim, P. Jain, and S. Banerjee, “Bifurcation phe-
nomena in two-dimensional piecewise smooth discontinuousmaps,”
Chaos-Interdiciplinary Journal of Nonlinear Science, vol. 20, no. 3, pp.
3 422 475–3 422 487, 2010.

[20] P.S. Dutta, B. Routroy, S. Banerjee, and S. S. Alam, “On the existence
of low-period orbits inn-dimensional piecewise linear discontinuous
maps,” Nonlinear Dynamics, vol. 53, no. 4, pp. 369–380, December
2008.

[21] I. Sushko, L. Gardini, and T. Puu, “Tongues of periodicity in a family
of two-dimensional discontinuous maps of real mobilus type,” Chaos,
Solitons and Fractals, vol. 21, no. 2, pp. 403–412, 2004.


