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Abstract 

In the present work, the mechanism of damping in layered and jointed structures with 
connecting bolts and washers have been extensively studied. A lot of experiments have 
been conducted on a number of specimens with connecting bolts of various diameters to 
study its effect on the damping capacity of the layered and jointed structures and to 
establish the authenticity of the theory developed. Intensity of interface pressure, 
diameter of the connecting bolts, washers, number of layers, kinematic coefficient of 
friction at the interfaces and frequency and amplitude of excitation are found to play a 
major role on the damping capacity of such structures. It is established that the damping 
capacity of structures jointed with connecting bolts can be improved substantially by 
increasing the number of layers connected with bolts of smaller diameters along with use 
of washers.  
 

1. Introduction 
Over the years, the study of damping mechanism and its improvement in structures has 
become significant in effectively controlling the undesirable effects of vibration with 
simultaneously aiming at enhancing the damping capacity. As the available damping in 
the structural members is inadequate, various techniques have been adopted in practice to 
improve the damping capacity of structures. These techniques are: (i) use of 
constrained/unconstrained viscoelastic layers, (ii) fabrication of multi-layered sandwich 
construction, (iii) insertion of special high elastic inserts in the parent structure, (iv) 
application of spaced damping techniques and, (v) fabricating layered and jointed 
structures with welded/riveted/bolted joints. Such structures can be designed and 
fabricated effectively depending on the required damping capacity of the structures by 
suitably controlling the influencing parameters.  



 

The logarithmic damping decrement, a measure of damping capacity of layered and 
jointed structures is determined by the energy principle considering the interface pressure 
and the relative dynamic slip at the interfaces of the contacting layers. In order to obtain 
the damping capacity of such structures correctly, these two major parameters are to be 
measured accurately. Previous investigators such as Fernlund [1], Kobayashi and 
Matsubayashi [2] and [3] and Shin et al. [4] have reported on this interface pressure and 
its distribution characteristics without specifying the spacing of the connecting bolts 
between them. Extensive work has been reported by Masuko et al. [5], Nishiwaki et al. 
[6] and [7] and Motosh [8] on damping capacity of such structures assuming uniform 
pressure distribution at the interfaces of the layered and jointed structures without 
considering the actual pattern but by using Rötschar's pressure cone [5]. Connolly and 
Thornley [9] and Mitsunaga [10] have shown that the pressure distribution at the jointed 
interfaces is not uniform but varies almost parabolically being maximum at the surface of 
the bolt hole. Further, Gould and Mikic [11] and Ziada and Abd [12] have established 
that there exists an influence zone under each such bolt which is independent of the 
tightening load on the bolt. This zone is found to be a circle around the centre of the bolt 
with a diameter equal to 3.5 times its own diameter as shown in Fig. 1. Nanda [13] and 
Nanda and Behera [14], [15] and [16] have also done considerable amount of work on the 
distribution pattern of the interface pressure and have found out the damping capacity of 
such layered and jointed structures both numerically and experimentally considering 
various parameters. Moreover, Hartwigsen et al. [17] conducted experiments to study the 
nonlinear effects of a typical shear lap joint on the dynamics of two structures: a beam 
with a bolted joint in its centre; and a frame with a bolted joint in one of its members. 
Both structures are subjected to a variety of dynamical tests to determine the nonlinear 
effects of the joints. The tests reveal several important influences on the effective 
stiffness and damping of the lap joints. They have established that the damping is higher 
and amplitude-dependent in the jointed structures.  

 

Fig. 1. Free-body diagram of a bolted joint showing the influence zone. 



 

2. Theoretical analysis 
As the interface pressure and its distribution pattern for layered and jointed structures 
have a considerable effect on its damping capacity, their accurate evaluation is essential. 
Gould and Mikic [11] and Ziada and Abd [12] have established that the interface pressure 
distribution under each connecting bolt is almost parabolic in nature as shown in Fig. 1. 
Hence, in the present analysis this distribution has been assumed to be polynomial with 
even powers in a non-dimensional form as  

 
p/σs=A1+A2(R/RB)2+A3(R/RB)4+A4(R/RB)6+A5(R/RB)8+A6(R/RB)10, (1) 
where p, σs, R and RB are the interface pressure, surface stress on the jointed structure due 
to tightening load, any radius within the influencing zone and radius of the connecting 
bolt, respectively, and A1, A2, A3, A4, A5 and A6 are the constants of the polynomial. These 
constants are evaluated from the numerical data of Ziada and Abd [12] by using Dunn's 
curve fitting software. These are: 0.68517E+00, −0.10122E+00, 0.94205E−02, 
−0.23895E−02, 0.29487E−03 and −0.11262E−04, respectively.  

The present investigation is based on the loss energy due to friction at the interfaces and 
the strain energy of a cantilever beam as shown in Fig. 2. The energy loss per cycle of 
vibration (Ef) arising due to friction and relative dynamic slip (ur) at the interfaces has 
been found out using the theory of Nishiwaki et al. [7] as 

 

 
(2) 

where Fr, dur, FrM and urM are the frictional force at the interfaces of the beam in presence 
of relative dynamic slip, incremental relative dynamic slip, maximum frictional force at 
the interfaces of the beam during vibration and relative dynamic slip between the 
interfaces at the maximum amplitude of vibration, respectively, as shown in Fig. 3.  

 

 

 

 



 

Fig. 2. Mechanism of dynamic slip at the interfaces. 

 

 

Fig. 3. Relationship between the friction force (Fr) and the relative dynamic slip (ur) during one cycle. 

 

 

 

 

 

 

 



The maximum frictional force at the interfaces of the beam under transverse vibration is 
given by 

 
FrM=µN, (3) 
where µ and N are the kinematic coefficient of friction and the total normal force at the 
interfaces of the layers under each connecting bolt, respectively.  

This total normal force has been determined by Nanda and Behera [15] and is given by  

 
N=[A1{(RM/RB)2-1}+{A2/2}{(RM/RB)4-1}+{A3/3}{RM/RB)6-1}+{A4/4}{(RM/RB)8-
1}+{A5/5}{(RM/RB)10-1}+{A6/6}{(RM/RB)12-1}][P/3], (4) 

where RM and P are the limiting radius of the influencing zone under each connecting 
bolt and axial load on the connecting bolt due to tightening torque, respectively.  

The axial load P on the connecting bolt due to tightening torque is given by Shigley [18] 
as 

 
P=[T/0.2DB], (5) 
where T and DB are the tightening torque and nominal diameter of the connecting bolt, 
respectively.  

The vibration of the cantilever beam specimen, as shown in Fig. 2, is expressed as 

 
 (6) 

where the space function, Y(x)=C1sinλx+C2cosλx+C3sinhλx+C4coshλx, and the time 
function, f(t)=Acosωnt+Bsinωnt, C1, C2, C3, and C4 are constants to be evaluated from the 
boundary conditions with the usual notation: and A and B are constants 
to be evaluated from the initial conditions.  

Using the initial free end displacement, y(l,0) with its boundary conditions for the 
cantilever beam, the equation for slope is given by 

(7

where ωn is the natural circular frequency of vibration.  

 

 



The actual relative dynamic slip at the interfaces of a bolted joint, which is at a distance 
of “li” from the fixed end of a layered and jointed cantilever beam, is given by 

 
ur(li,t)=αu(li,t), (8) 
where α is the dynamic slip ratio (ur/u0) and u0 is the relative dynamic slip between the 
interfaces in the absence of a friction force at a bolted joint.  

If the layered and jointed beam specimen is given an initial free end displacement, the 
relative dynamic slip at the interfaces of the layers, as shown in Fig. 2, is given by 

 
ur(li,t)=α[∆u1+∆u2]=2αhtan[∂y(li,t)/∂x], (9) 
where 2h is the thickness of each layer of the cantilever beam.  

Modifying expression (7) and combining the same with expression (9), the maximum 
relative dynamic slip under a connecting bolt is found to be 

 
urM=[αh][(cosλl+coshλl)(coshλli-cosλli)-
(sinλl+sinhλl)(sinλli+sinhλli)]×[λy(l,0)]×[sinλlcoshλl-cosλlsinhλl]-1. (10)

The overall maximum relative dynamic slip for a layered and jointed cantilever beam 
with “q” number of equispaced connecting bolts having a spacing of 3.5 times their 
diameter has also been found out by Nanda [13] and is given by 

 
urM=αhXsumλy(l,0), (11)
where 
 

It is assumed that the energy loss of the layered and jointed beam consists of the loss 
arising from interface friction under the joints (Ef) and the loss from material and support 
damping (E0). Hence, the logarithmic damping decrement of a layered and jointed beam 
is expressed as 

 
δ=[(Ef/En)+(E0/En)]/2=δf+δ0, (12)



where En is the energy stored per cycle of vibration due to the initial amplitude of 
excitation [y(l,0)] and is given by En=[ky2(l,0)]/2.  

The logarithmic damping decrement due to material and support damping (δ0) being very 
small compared to the interface friction damping, is neglected and the expression for the 
logarithmic damping decrement is simplified as 

 
δ≈δf=Ef/2En. (13)

The energy loss per cycle due to the friction at the interfaces as given in expression (2), is 
modified by combining expressions (3) and (11) and hence, the logarithmic damping 
decrement for such a beam is then found to be 

 
 (14)

where k is the static bending stiffness of the layered and jointed cantilever beam.  

As expression (14) for logarithmic damping decrement is valid for a two-layered and 
jointed cantilever beam, a generalized expression has been developed for a multi-layered 
and jointed cantilever beam as given by 

 
 (15)

where m is the number of layers.  

The logarithmic damping decrement for two as well as multi-layered structures jointed 
with connecting bolts with varying diameter can be found out using expressions (14) and 
(15), respectively. The dynamic slip ratios as found out by Nanda [13] and kinematic 
coefficient of friction as used by Masuko et al. [5] have been utilized in these expressions 
to find out the numerical values of logarithmic damping decrement. However, product of 
dynamic slip ratios and kinematic coefficient of friction as found out by Nanda [13] has 
been used for aluminium specimens to find out the numerical values of logarithmic 
damping decrement.  

The variation of the interface pressure distribution plays a vital role on the logarithmic 
damping decrement of layered and jointed structures and the same effect has been studied 
experimentally by using washers on both the sides of the specimens. The numerical 
results for the logarithmic damping decrement have been found out using the values of 
dynamic slip ratios determined by Nanda [13]. These values of the dynamic slip ratios 
have been changed due to variation in the interface pressure with use of washers on both 
the sides of the specimens.  

 



3. Experimental techniques and experiments 
In order to find out the logarithmic damping decrement of layered and jointed beams and 
to compare it with the numerical results evaluated from analytical expressions, an 
experimental set-up with a number of specimens has been fabricated. The experimental 
set-up with detailed instrumentation is shown in Fig. 4. The specimens are prepared from 
commercial mild steel and aluminium flats of the sizes as presented in Table 1 by joining 
two as well as more number in layers with the help of equispaced connecting bolts of 
same tightening torque on them. The distance between the consecutive connecting bolts 
have been kept as 3.5 times their diameter depending on the diameter of the connecting 
bolts. The width of the specimens has also been changed according to the zone of 
influence. The cantilever lengths of the specimens have been varied accordingly in order 
to accommodate the corresponding number of connecting bolts as presented in Table 1.  

 

Fig. 4. Schematic diagram of experimental set-up with detailed instrumentation. 

 

 

 

 

 



 

Table 1.  

Details of the specimens used in the experiment both with and without washers  

Dimension of the 
specimen 
(thickness × 
width), (mm×mm) 

Material of the 
specimen 

Diameter of 
the connecting 
bolt (mm) 

Number 
of layers 
used 

Number 
of bolts 
used 

Cantilever 
length (mm)

3.00×42.00    9 378.00 

5.40×41.00 Mild steel 12 2 8 336.00 

12.40×40.00    7 294.00 

6.80×24.50    14 392.00 

 Mild steel 8 2 13 364.00 

    12 336.00 

11.40×25.00    11 308.00 

6.80×21.00    18 378.00 

 Mild steel 6 2 17 357.00 

11.40×21.00    16 336.00 

    15 315.00 

3.20×42.00    9 378.00 

5.60×41.00 Aluminium 12 2 8 336.00 

11.40×37.20    7 294.00 

5.60×28.00    14 392.00 

 Aluminium 8 2 13 364.00 

    12 336.00 

11.40×27.00    11 308.00 

5.60×21.00    18 378.00 

 Aluminium 6 2 17 357.00 

    16 336.00 



Dimension of the 
specimen 
(thickness × 
width), (mm×mm) 

Material of the 
specimen 

Diameter of 
the connecting 
bolt (mm) 

Number 
of layers 
used 

Number 
of bolts 
used 

Cantilever 
length (mm)

11.40×21.00    15 315.00 

11.20×21.00 Aluminium 6 4 18 378.00 

11.20×21.00 Solid aluminium beam    378.00 

 

The specimens are rigidly fixed to the support to obtain perfect cantilever condition and 
experiments are conducted initially to determine the bending modulus of elasticity (E) of 
the specimen materials. Solid cantilever specimens out of the same stock of commercial 
mild steel and aluminium flats are held rigidly at the fixed end and its free end deflection 
(∆) is measured by applying static loads (W). From these static loads and corresponding 
deflections, average static bending stiffness (W/∆) is determined. The bending modulus 
for the specimen material is then evaluated from the expression E=[(W/∆)(l3/3I)]. The 
average values of “E” for the mild steel and aluminium specimens used in the 
experiments are found to be 172.7 and 63.30 GN/m2, respectively.  

The static bending stiffness (k) of the specimens are determined and is found that the 
same for layered and jointed beam is always less than that of an equivalent solid one (k′) 
and increases with increase in tightening torque on the connecting bolts and remains 
almost constant after a limiting value, i.e., 10.370 N m (7.5 lb ft) as shown in Fig. 5 for a 
particular case. The ratio of this bending stiffness at the limiting tightening torque 
condition with the equivalent bending stiffness of a solid one (α′) are found out for all 
specimens. The average value of α′ for each group of specimens has been utilized in the 
numerical analysis.  



 

Fig. 5. Variation of static bending stiffness with applied tightening torque on the connecting bolts. 

 

The logarithmic damping decrement and natural frequency of vibration of all the 
specimens at their first mode of free vibration are found out experimentally. The 
tightening torques on all the connecting bolts of the specimens are maintained equal for 
each set of observations and varied in steps in most of the cases as 3.46, 6.92, 13.84, 
20.76, and 27.68 N m (i.e., 2.50, 5.00, 10.00, 15.00 and 20.00 lb ft respectively). The 
lengths of these specimens during experimentation are also varied. In order to excite the 
specimens at their free ends, a spring loaded exciter was used. The dial gauge 
incorporated with the exciter recorded the initial amplitude of excitation. The amplitude 
of excitation was varied in steps and maintained as 0.1, 0.2, 0.3, 0.4, and 0.5 mm for all 
the specimens tested under the different conditions of the tightening torque on the 
connecting bolts. The free vibration at the required amplitude of excitation was sensed 
with a non-contacting type of vibration pick-up and the corresponding signal was fed to a 



cathode ray oscilloscope through a digitizer to obtain a steady signal. The logarithmic 
damping decrement was then evaluated from the measured values of the amplitudes of 
the first cycle (a1), last cycle (an+1) and the number of cycles (n) of the steady signal by 
using the equation δ=ln(a1/an+1)/n. The logarithmic damping decrement found out using 
the above technique does not address the change of damping in one signal as amplitude 
decays and the results so obtained may be seen as the variation in “overall equivalent” 
damping of structure with the variation of initial amplitude of excitation. The 
corresponding natural frequency was also determined from the time period (T1) of the 
signal by using the relationship f=1/T1. It is found that the natural frequency of vibration 
of the specimens are always less than that of their equivalent solid ones and increases 
with increase in tightening torque on the connecting bolts and remains constant after a 
limiting value, i.e., 10.370 N m (7.5 lb ft). The natural frequency of vibration increases 
with increase in tightening torque due to higher static bending stiffness as evident from 
the relationship, , where k and m′ are the static bending stiffness and mass 
of the beam respectively.  

4. Comparison of experimental and numerical results 
The logarithmic damping decrements of two layered mild steel and aluminium cantilever 
specimens with diameters 6, 8 and 12 mm connecting bolts have been found out using 
expression (14). These numerical results have been determined along with the 
corresponding experimental ones for comparison and one such result from each has been 
shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12. It is observed that both 
the curves are very close to each other with a maximum variation of 1.43% which 
authenticates the accuracy of the theory developed.  



 
Fig. 6. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 7. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 8. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 

 
 
 
 



 
Fig. 9. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 10. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 11. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 

 

 

 

 



 
Fig. 12. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 

 

 

 



 

Further, numerical results for two layered and jointed cantilever beams with washers on 
both the sides of the specimens with 6, 8 and 12 mm diameter connecting bolts have been 
found out using the above expression in order to find out its effect on the damping 
capacity of layered and jointed structures. These numerical results have been plotted 
along with the corresponding experimental ones and one such example from each has 
been shown in Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18 showing that both the 
plots are very close to each other with a maximum variation of 1.83%.  



  

Fig. 13. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 14. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 15. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



)  

Fig. 16. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 17. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



 
Fig. 18. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 

 

 



Moreover, in order to study the effect of number of layers on the damping capacity of 
layered and jointed structures, numerical results for multi-layered and jointed aluminium 
specimens with 6 mm diameter connecting bolts and washers have been determined using 
expression (15). These numerical results for logarithmic damping decrement are also 
presented along with the corresponding experimental ones as shown in Fig. 19 which 
shows that both the curves are very close to each other with a maximum variation of 
1.12%.  



 
Fig. 19. Variation of logarithmic decrement (δ) with applied tightening torque on the connecting bolts.  

 



5. Discussion and conclusion 
From the theoretical analysis as well as numerical and experimental results, the following 
salient points have been observed. They are discussed below and the conclusions have 
been drawn accordingly.  

(1) The static bending stiffness of the layered and jointed structure is smaller than that of 
an equivalent solid one and increases with an increase in the tightening torque on the 
connecting bolts and remains almost constant beyond a limiting value of the tightening 
torque, i.e., 10.370 N m (7.50 lb ft). Moreover, this stiffness increases with a decrease in 
diameter of the connecting bolts when the dimensions of the layered and jointed 
structures are kept constant. However, the static bending stiffness decreases with a 
decrease in diameter when the sizes of such structures are changed according to the zone 
of influence due to tightening which is equal to 3.5 times the diameter of the connecting 
bolts. In such cases, the width of the specimen reduces, thereby decreasing the second 
moment of inertia (I) and also the static bending stiffness. 

(2) The natural frequency of first mode vibration of layered and jointed structure is found 
to be smaller than that of its equivalent solid one and increases with an increase in the 
tightening torque on the connecting bolts due to higher static bending stiffness. The static 
bending stiffness increases because of higher interface pressure due to tightening torque. 
However, the frequency remains constant beyond a limiting value of the tightening 
torque, i.e., 10.370 N m (7.50 lb ft). 

(3) The mechanism of damping in layered and jointed structures assumed in the present 
analysis has been proved to be authentic, since the results for the logarithmic damping 
decrement obtained both from the numerical analysis and experiments tally reasonably 
well within 1.43%. 

(4) The following influencing parameters play a major role on the damping capacity of 
layered structures jointed with connecting bolts. They are: (a) tightening torque on the 
connecting bolts, (b) number of layers, (c) amplitude of excitation, (d) frequency of 
excitation, (e) diameter of the connecting bolts and (f) washers.  

(a) It has been established by Masuko et al. [5] that the logarithmic damping decrement 
increases along with an increase in the tightening torque on the connecting bolts and 
reaches a peak at a particular tightening torque and then reduces with an increase in the 
tightening torque on the connecting bolts. This is due to higher interface pressure with 
lower dynamic slip ratio at the interfaces which tend to behave like a solid beam. 
However, the limiting tightening torque at which the logarithmic decrement becomes a 
maximum, is so small that it is not practically possible to determine it in real application. 

(b) The logarithmic damping decrement increases with an increase in the number of 
layers in a layered and jointed structure due to an increase in the interface friction layers 
which causes an increase in the energy loss due to interface friction. 



(c) The logarithmic damping decrement of a layered and jointed structure decreases with 
an increase in amplitude of excitation due to introduction of higher energy into the 
system compared to that of the dissipated energy due to interface friction. Although, the 
dynamic slip ratio increases with an increase in amplitude of excitation, but the energy 
introduced in to the system is more compared to the increase in dissipated energy due to 
interface friction and the net effect is a decrease in the logarithmic damping decrement. 

(d) The logarithmic damping decrement of a layered and jointed structure decreases with 
an increase in natural frequency of vibration. Although, the dynamic slip ratio increases 
due to increase in the natural frequency of vibration but the increase in static bending 
stiffness of the layered and jointed structure is more compared to the loss energy due to 
friction at the interfaces resulting in the decrease of the logarithmic damping decrement. 
Moreover, the static bending stiffness and the natural frequency of vibration of the 
layered and jointed structures increase with the increase in the cross-section and decrease 
in the cantilever length of the specimens. 

(e) The damping capacity of a layered and jointed structure increases as the diameter of 
the connecting bolts decreases. The axial load on the connecting bolts increases for the 
same tightening torque due to decrease in diameter and thereby increases the interface 
pressure as well as the frictional force and also the loss energy at the interfaces due to 
increase in the total normal force as evident from Eqs. (4), (5), (14) and (15). The static 
bending stiffness decreases thereby decreasing the dynamic slip ratio and the net effect is 
an increase in logarithmic damping decrement of the layered and jointed structures. The 
static bending stiffness of the layered and jointed specimens decreases due to decrease in 
the width of the specimens which decreases the second moment of inertia (I) and hence 
the static bending stiffness (3EI/l3). The width of the specimens change according to the 
zone of influence due to tightening which is equal to 3.5 times the diameter of the 
connecting bolts. 

(f) It has been observed from both the numerical and experimental results that the 
logarithmic damping decrement of a layered and jointed structure connected with bolts 
and washers on both sides are more compared to that of structures without washers. The 
reasons attributed for the above findings are as follows. The static bending stiffness for 
such cases increases thereby increasing the dynamic slip ratio. Although, the layered and 
jointed structure shows higher stiffness with the use of washers, the energy loss due to 
higher dynamic slip ratio as well as modified interface pressure distribution increases at a 
higher rate than that of the strain energy due to higher stiffness. 

Finally, it is established that the damping capacity of the layered and jointed structures 
can be improved considerably by increasing the number of layers, using connecting bolts 
of smaller diameter with washers on both the sides as well as with minimum possible 
tightening torque on the connecting bolts. This increase in logarithmic damping 
decrement may go even up to 655.7% in case of aluminium specimens compared to that o 
of an equivalent solid beam.  
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