
An Approach to Data Integrity in Web Applications

Asish Kumar Dalai, Saroj Kumar Panigrahy and Sanjay Kumar Jena

Department of Computer Science and Engineering

National Institute of Technology Rourkela, Odisha, India

dalai.asish@gmail.com, skp.nitrkl@gmail.com. skjena@nitrkl.ac.in

Abstract— Web application security is extremely important due

to the extensive use of web in daily life. Today for almost every

purpose we depend on web such as for social networking, ticket

booking, online shopping etc. We are exchanging the confidential

information as and when needed. Attackers can capture this

private information and may modify before being sent to the

application server. This paper explains a security model that can

be used in web applications to maintain integrity of the data.

Keywords-Web Security; Message Integrity; Hash Function;

Stream cipher

I. INTRODUCTION

Applications on web are highly prone to attack because of its

distributed nature. Providing security to these applications is

highly essential. Message integrity allows the sender to send a

message to the receiver in such a way that if the message is

modified in the root, then the receiver will almost certainly

detect this. It is needed to protect the integrity of the message

ensuring that each message that it is received and deemed

acceptable is arriving in the same condition as it was sent out

with no bits inserted, missing, or modified. E-commercial sites

dealing with financial transactions are susceptible to attacks

where attacker tries to modify the parameters which results the

loss in data integrity. The proposed model for data integrity

ensures that the massage received in the server is same as it

was intended to be. Our model ensures that some parameters

which must not be modified i.e. server set parameters are sent

along with key hashed message authentication code to ensure

data integrity.

In this paper we have classified the web application attack into

two types and provided the solutions for them

1. In transit attack: Attacker is at a remote location

intercepts the message and then modifies it before being

sent to the server.

2. Source station attack: Attacker sitting in the client

machine intentionally modifies the parameters and then

sends it to the server.

For in transit attack we are using iterated hash function to

generate MAC and a MAJE4 stream cipher. For source station

attack we apply the hash function to only those parameters

which are set by server as fixed parameters. As shown in Fig.

1, the message and the fixed parameters from the server are

passed through the iterated hash function to generate message

authentication codes for them)(MH and)(FPH

respectively. The message M along with the hash codes

)(MH and)(FPH are encrypted using MAJE4 with a key

K of 128 bit length. The cipher text is then transmitted to the

server. Using the same key K and the fast stream cipher

MAJE4 the cipher text is decrypted back to produce the

message and the hash codes)(MH and)(FPH .Now the

server re-computes the hash code of the message and the

server set fixed parameters using the same iterated hash

function. Hence the server validates the integrity of the

message and the integrity of the server set fixed parameters by

comparing the hash codes received from client with that

generated at the server. If both the codes match then the

transmission has done securely.

This paper is structured as follows: Section II describes the

working of iterated hash function. Section III contains MAJE4

cipher. Implementation of the security pattern has been

described in Section IV Concluding remarks are given in

Section V.

Fig.1. Use of Iterated Hash Function and MAJE4 Encryption

II. ITERATED HASH FUNCTION

We have taken the Merkle-Damgard model for our iterative

hash function [9]. This model simplifies the management of

National Conference on Emerging Trend & Its Application in Engineering (NCETAE-2011)

1

large inputs and the production of a fixed length output using a

function F . The message is viewed as a collection of m bit

blocks.][].....1[nMMM with miM][bits for ni ,...2,1 .

Assume the length || M of M as a multiple of m bits, which

can be achieved by a suitable padding. Enough numbers of

zero are added to bring the length of message to multiple of m

bits. The blocks are then processed sequentially using the

function F . The result of the hash function till then and the

current message block are taken as the inputs. This operation is

repeated over the entire message blocks to find the hash code

of the message M at the end.

The following steps are used to compute the hash code.

1. The message is viewed as a collection of 64-bit blocks.

][].....1[nMMM with 64][iM bit for ni ,...2,1 .

2. Check whether the length || M of M is a multiple of 64

bits and whether n is an even number, if not suitably append

enough zeros to bring the length to a multiple of 64 bits and

to make n even.

3. Apply the first function 1F which is the add operation to

the consecutive blocks.

]4[]3[]2[],2[]1[]1[(MMMBMMMB and so on till

])[]1[]2/[nMBnMBnMB

4. Apply the second function 2F which is an XOR

operation, to the random initial value and to]1[MB and

generate the initial hash code. Then 2F is applied again to

the initial hash code and to]2[MB to generate the next hash

code and so on. Finally apply 2F on the result of the hash

code obtained so far and to]2/[nMB to generate the final

hash code)(MH and)(FPH of 64 bit length.

5. Now)(MH and)(FPH is added with M as the

authentication tag.

Fig. 2 represents the steps explained above. The random initial

value used in step 4 provides message integrity protection and

authentication to the hashing process to compute the hash of

the initial message. The recipient can verify that the message is

authentic by using the same random initial value, which was

used to compute the hash code of the message. If these hashes

match, then the message is believed to have arrived unchanged

from the sender. Thus the initial random value prevents

attackers from making undetectable changes to the message.

As specified in the design factors of hash function, message of

any length can be considered as the input while the output hash

code is of fixed 64-bit length. The initial value used as K in

)1(and)2(is random and hence the attackers will not be able

to predict the initial value easily. The functions 1F and 2F in

)1(and)2(are ADD and XOR operations [15] which are easy

to implement both in hardware and software. At the same time

the nested usage of operators + and ^ complicates

cryptanalysis. Mainly the security of the message

authentication mechanism depends on the cryptographic

properties of the hash function H. Here the non-linearity is

obtained when functions 1F and 2F are nested. This provides

added security.

It is also observed that the length in bits of a message

authentication code is directly related to the number of trials

that an attacker has to perform before a message is accepted.

For a message authentication value of bit length m, the attacker

has to perform on average
12m random online message

authentication code verifications. The minimum reasonable

length for the message authentication code is 32 bits; this

corresponds to about 2 billion trials. Here more appropriate 64

bits blocks are considered.

Fig. 2. Model of Iterated Hash Function

That is))(1(2)(MFKFMH)1(

))(1(2)(FPFKFFPH)2(

III. MAJE4: A FAST STREAM CIPHER

The MAJE4 is a 128-bit or 256-bit key algorithm and the

randomness property of the stream cipher is analyzed by using

the five statistical tests like frequency test, serial test, poker

test, runs test and autocorrelation test [11]. All the five

statistical tests are passed by this generator for all the random

streams produced. Hence MAJE4 algorithm can be used very

well for encrypting the message of any length. The algorithm

for 128bit MAJE4 cipher is given below.

Step 1: Take key)(K of length 128bit. And D = 4

Step 2: Consider two least significant bits of]0[K and find

its decimal equivalent and store in the variable „ N ‟.

Step 3:
][]0[^ NKKran .

Step 4: Consider two least significant bits of ran and find its

decimal equivalent and store in the variable „M‟.

Step 5: Check the 16th bit in ran,

If it is 1 then

)()^(]mod3[]mod2[]mod1[][DMDMDMM KKKKnewran

Else
)^()^(]mod3[]mod2[]mod1[][DMDMDMM KKKKnewran

Step 6: The output 32-bit word is newran, which can be

used to XOR with the corresponding word in the

plain text.

Step 7: Advance all the keys as

20*][][][][iiii KKKK

2

Step 8: Go to step2

IV. USING THE MODEL

The following steps are performed to check the integrity of
the data using iterated hash function and MAJE4 stream cipher.

1. At the client side hash code of message M and the hash

code of fixed parameters are generated by using iterated

hash function.

2. Then the message M , hash code of the message

)(MH and hash code of fixed parameters)(FPH are

encrypted using 128 bit key and the fast stream cipher

MAJE4 and sent to the server.

3. The server decrypts the whole message using the same

128 bit key and MAJE4 stream cipher to extract the M ,

)(MH and)(FPH

4. Server re-computes the hash code)(MH and

)(FPH over the message M and the server set fixed

parameters respectively and then and checks whether

they matches with the received hash codes.

5. If))(1(2)(MFKFMH then the message is

considered in transit attack proof and if

))(1(2)(FPFKFFPH then there is no tampering of

data at the source i.e. the message is source station attack

proof. After these two tests only we can say that the

message has reached securely.

The time taken for producing the hash codes using the iterated

hash function for the message M and the fixed parameter FP

and encryption decryption using the iterated hash function and

MAJE4 is given in table I.

TABLE I. TOTAL TIME TAKEN FOR PRODUCING THE HASH CODES AND

ENCRYPTION DECRYPTION USING THE ITERATED HASH FUNCTION

AND MAJE4

Plain text (M,
FP) (bytes)

Time taken for
producing hash

codes (Sec.)

Total time taken
for encryption and
decryption(Sec.)

M FP H(M) H(FP)
DK[EK [M || H (M)

|| H (FP)]]

8089 1997 .013 .003 .063

98446 2042 .014 .003 .075

175150 2600 .025 .004 .093

205161 2941 .030 .004 .131

267395 4843 .039 .007 .195

The deterministic random bit generator data for the MAJE4 is

given in Table .II

TABLE II. TIMING ANALYSIS & MEMORY REQUIREMENT

DRBG MAJE4

Key length 128-bit

No. of random numbers Generated 1,15,39,399

No. of random bits per each random number 32

Total no. of bits produced (speed Mbps) 352.15

Memory requirement (Bytes) 5435

V. CONCLUSION

From table I and II we came to the conclusion that integrity
of the data can be achieved by using a little effort and time by
using the proposed model. The additional memory requirement
is also not an issue as memory is getting cheaper by these days.
It is faster and can be easily implemented by web applications.
The additional use of iterated hash function makes the system
more reliable by preventing the source station attack. Digital
transmissions and online transactions over web can take the
advantage of the model.

VI. ACKNOWLEDGMENT

The authors are indebted to Information Security Education

and Awareness (ISEA) Project, Ministry of Communication

and Information Technology, Department of Information

Technology, Govt. of India, for sponsoring this research and

development activity.

REFERENCES

[1] Wikipedia: Transport layer Security, http://en.wikipedia.org /wiki/
Secure_Sockets_Layer.

[2] Sheena Mathew, K.Paulose Jacob, “A New Fast Stream Cipher:
MAJE4”, Proceedings of IEEE, INDICON 2005, pp60-63, 2005.

[3] National Institute of Standards and Technology (NIST) FIPS- 180-2:
Secure Hash Standard, at http://csrc.nist.gov/publications/fips/fips 180-
2/fips 180-2.pdf. 2002.

[4] Mihir Bellare, Ran Canetti, Hugo Krawczyk, “Keying Hash Functions
for Message Authentication”, Advances in Cryptology- CRYPTO,
LNCS 1109, Springer- Verlag, pp 1-15. 1996.

[5] Mihir Bellare, Ran Canetti, Hugo Krawczyk, “Message Authentication
using Hash Functions the HMAC Construction”, CryptoBytes, Vol 2,
No.1, RSA Laboratories pp 1-5. 1996.

[6] Thomas Calabrese, “Information Security Intelligence Cryptographic
Principles and Applications”, Thomson Delmar Learning, India. 2006

[7] William Stallings, Cryptography and Network Security: Principles and
Practices, Fifth Edition, Prentice Hall, 2010.

[8] Ivan Damgard, “A design principle for hash functions”, In Advances in
Cryptology - CRYPTO '89 Volume 435 of Lecturer Notes in Computer
Science, Pages 416-427, Berlin, NewYork, Tokyo, Springer - Verlag.
1990.

[9] Ralph C. Merkle, “One way hash functions and DES”, In Advances in
Cryptology - CRYPTO '89 Volume 435 of Lecturer Notes in Computer
Science, Pages 428-446, Berlin, New York, Tokyo, Springer - Verlag.
1990.

[10] Sheena Mathew, K. Paulose Jacob, “Message Integrity in the World
Wide Web: Use of Nested Hash Function and a Fast Stream Cipher” -
International Conference on Advanced Computing and
Communications, 2006. IEEE Conferences, ADCOM 2006.

[11] D.E.Knuth, The Art of Computer Programming, Vol.2, Seminumerical
Algorithms, Third Edition, Addison – Wesley, 1997.

[12] Sheena Mathew, K. Paulose Jacob, “Use of Novel Algorithms MAJE4
and MACJER-320 for Achieving Confidentiality and Message
Authentication in SSL & TLS”. -Page(s): 444 – 450, World Academy of
Science, Engineering and Technology 39, 2008.

[13] Stefan Lucks, “Design Principles for Iterated Hash Functions” e-print
(September 29, 2004) http://th.informatik.uni-
mannheim.de/people/lucks/

[14] Antoine Joux, “Multicollisions in Iterated Hash Functions. Application
to Cascaded Constructions”CRYPTO 2004, LNCS 3152, pp. 306–316,
2004.

[15] Mihir Bellare, etal."XOR MACs: New Methods for Message
Authentication using Finite PseudorandomFunctions", Advances in
Cryptology - Crypto 95 Proceedings, Lecturer Notes in Computer
Science Vol. 963, D. Coppersmith ed. Springer -Verlag, 1995.

3

http://csrc.nist.gov/publications/fips/fips%20180-2/fips%20180-2.pdf
http://csrc.nist.gov/publications/fips/fips%20180-2/fips%20180-2.pdf

