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Abstract 

  The software community acknowledges that timely, accurate estimates of development effort are important to the 
success of major software projects. Estimates are used when tendering bids, for evaluating risk, resource 
scheduling and progress monitoring. Inaccurate estimates have implications for all these activities, and so, 
ultimately, the success or failure of a project. To date most work has focused upon building algorithmic models of 
effort, for example COCOMO (Constructive Cost Model). These can be calibrated to local environment. This paper 
presents an alternative approach to estimation based upon the use of analogies  (or CBR). The underlying principle 
is to characterize projects in terms of features (e.g. number of interfaces, the development method etc.). Completed 
projects are stored and then the problem becomes one of finding the most similar projects to the one for which 
prediction is required. Similarity is defined as Euclidean distance in n-dimensional space where n is the number of 
project features. Each dimension is standardized so all dimensions have equal weight. The known effort values of 
the nearest neighbors to the new project are then used as the basis for the prediction. Our analysis is based on IBM 
dataset of 24 projects. Our results show that estimation by analogy is a viable technique that, at the very least, can 
be used by the project mangers to complement current estimation techniques. 
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Introduction 

 

An important aspect of any software development project is to know how much it will cost. In most cases 

the major cost factor is labor. For this reason estimating development effort is central to the management 

and control of a software project. Over the past 20 years case-based reasoning (CBR) has been 

successfully applied to a wide range of problem domains. Our particular interest is in predicting effort 

(and related factors such as duration) for software projects .Of course, such predictions are required at the 

early stage of software life cycle. Effort estimation is problematic because it is difficult to derive accurate 

size and cost figures from the features of a project that are known early in the development process. This 

is important because software projects are difficult to justify or manage if it isn’t possible to estimate how 

long they’ll last and how much effort they’ll consume. For this reason software development effort 

estimation modeling has been an active research topic for more than 30 years. Despite this activity, no one 

technique has been found to be consistently effective. Various research groups have explored the 

application of CBR methods to predicting effort, motivated in part by obvious similarities between project 

managers seeking to estimate based on recall of past similar projects, and the formal use of analogies in 

CBR[11][12][14][15]. 
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Case-Based Reasoning 

Case-based reasoning (CBR) was formalized in 1980s following from the work of Schank and others on 

memory. According to Riesbeck and Schank 

 “ A case-based reasoner solves new problems by adapting solutions that were used to solve old 

problems” 

 It is based upon the fundamental premise that similar problems are best solved with similar solutions. 

According to Leak 

“Case-based reasoning is reasoning by remembering”. 

The idea is to learn from experience. However, a crucial aspect of CBR lies in the term “similar”. The 

technique does not require an identical problem to have been previously solved. Also CBR differs from 

many other artificial intelligence techniques in that it is not model based. This means, unlike knowledge 

based approaches that use rules, the developer does not have to explicitly define casualties and 

relationships within the domain of interest. For poorly understood problem domains this is major benefit. 

        CBR is technique for managing and using knowledge that can be organized as discrete abstraction of 

events or entities that are limited in time and space. Each such abstraction is termed a case. Software 

engineering examples could be projects, design patterns or software components. Cases are characterized 

by vectors of features such as file size, number of interfaces or development method. CBR systems 

typically function by solving the new problem, often termed the target case, through retrieving and then 

adapting similar cases from repository of past (and therefore solved) cases. The repository is termed case-

base. 

        CBR is argued to offer a number of advantages over many other knowledge management techniques, 

in that it: 

 Avoids many problems associated with knowledge elicitation and codification. 

 Only needs to address those problems that actually occur, whilst generative (i.e. algorithmic) 

systems must handle all possible problems. 

 Handles failed cases, which enable users to identify potentially high-risk situations. 

 Copes with poorly understood domains (for example, many aspects of software engineering) since 

solutions are based upon what has actually happened as opposed to hypothesized models. 

 Supports better collaboration with users who are often more willing to accept solutions from 

analogy based systems since these are derived from a form of reasoning akin to human problem 

solving. This final advantage is particularly important if systems are not only to be deployed, but 

also to have trust placed in them. 

            Since the 1980s CBR has generated significant research interest and has been successfully applied 

to a wide range of problem domains. Typical applications are diagnostic systems, for instance, CASCADE 

addressed solving problems with the operating system VMS. More recently, Alstom have deployed CBR 
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technology, in conjunction with data mining of past fault data, to support diagnosis of system error 

messages from the on-board computers which control all the train electronics. Another application area 

has been legal systems, unsurprisingly, since the concept of precedent and case law lie at the heart of 

many judicial systems such as those of the USA and UK. Design and planning are other problem domains 

that have also been tackled. For instance CADET was developed as an assistant for mechanical designers 

and ARCHIE provides the support for architects. Decision support, classification (e.g. PROTOS was 

developed to classify hearing disorders) and e-commerce (e.g. a last minute web based travel booking 

system that uses a CBR engine in order to overcome the problem of not always being able to exactly 

match client requirements) are other problem domains that have been successfully tackled using CBR. 

      As previously indicated, case-based reasoning has its heart the notion of utilizing the memory of past 

problems solved to tackle new problems1. Problems are organized as cases where each case comprises of 

two parts. These are the description part and a solution part. The description part is normally a vector of 

features that describes the solution for the specific problem and may vary in complexity from a single 

value for classification or prediction system to a set of rules or procedures to derive a solution that might 

include a range of multimedia objects such as video and sound files. 

 

 

The Basic CBR cycle 

   Case-based reasoning( Klodner 1992; Watson & Marir 1994; Slade 1991) is a relatively simple concept- 

it involves matching the current problem against ones that have already been encountered in the past and 

reworking the solutions of the past problems in the current context. It can be represented as a cyclical 

process that is divided into four following sub processes depicted in Figure 1( Aamodt & Plaza 1994): 

• Retrieve the most similar cases or case from the case base. 

• Reuse the case to solve the problem 

• Revise the proposed solution, if necessary. 

• Retain the solution for future problem solving. 

 

 

 

                                                                           

 

                              

                              
                                                 
1  Strictly speaking some authors differentiate between interpretive and problem solving CBR. Interpretive CBR focuses upon 
classification rather than direst problem solving, although it could always be argued that classification can be viewed as a sub 
goal to solving another problem. Whatever, this is not a distinction that is pursued in this chapter. 
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Fig 1: the CBR cycle 

   A new problem, described as a case, is compared to the existing cases in the case base and the most 

similar case or cases are retrieved. These cases are combined and reused (i.e. adapted) to suggest a 

solution for the new problem. The solution proposed may need to be revised (i.e. evaluated and corrected) 

somewhat if it is not a valid solution. This verified solution is retained by adding it a new case to the case 

base or as amendments to existing cases in the case base for use in future problem solving. 

   Central is the case-base, which is a repository of completed cases, in other words the memory. When a 

new problem arises it must be codified in terms of the feature vector (or problem description) that is then 

the basis for retrieving similar cases from case-base. Clearly, the greater the degree of overlap of features, 

the more effective the similarity measures and case retrieval. Ideally the feature vectors should be 

identical since CBR does not deal easily with missing values, although of course there are many data 

imputation that are being explored. Measuring similarity lies at the heart of CBR and many different 

measures have been proposed. Irrespective of the measure, the objective is to rank cases in decreasing 

order of similarity to target and utilize the known solution of the nearest k cases. Solutions derived from 
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the retrieved cases can then be adapted to better fit the target case either by rules, a human expert or by a 

simple statistical procedure such as a weighted mean. In the latter case the system is often referred to as k-

nearest neighbor (k-NN) technique. Once the target case has been completed and the true solution known 

it can be retained in the case-base. In this way the case-base grows over time and new knowledge is 

added. Of course it is important not to neglect the maintenance of the case-base over time so as to prevent 

degradation in relevance and consistency.  

  

Proposed CBR algorithm for cost estimation 

   CBR offers a number of advantages over the other cost estimation techniques. The developers of the 

various algorithmic models have attempted to derive models that quantify the casual dependencies within 

the domain. As these models do not effectively solve the problem, this suggests that domain is difficult to 

model without clear rules or a clear understanding of all the different elements that contribute to cost 

estimation. The main advantage of CBR over the use of algorithmic models is that the use of CBR avoids 

the need to model the domain. 

    One of the difficulties with any of the existing techniques is the lack of project history data within 

organizations. This data is used to calibrate algorithmic models and for comparison purposes in estimation 

by analogy. A lack of data also means that problem space is not uniformly covered. There may be a 

greater intensity of sample projects in some areas than in others. There may be other areas of the problem 

space where there is no past project data available. For techniques such as algorithmic techniques and 

estimation by analogy this makes deriving general models from data unworkable. CBR however will use 

the data that is relevant and available to make prediction. Furthermore, a case base will also provide an 

effective means of storing data on historical projects. 

     CBR also has the advantage of possessing the capability to explain its reasoning. It is possible to view 

the cases, which are retrieved as similar to the target case, and to view the cases, which are retrieved as 

similar to the target case, and to view the adaptation strategies that operate on the retrieved cases, which 

result in prediction. It also allows manual adaptation so an expert can extrapolate from the similar 

retrieved cases and adjust the recommended solution if they feel it necessary. 

          Lastly, as CBR is a machine learning technique, a CBR system will augment its case base with new 

project scenarios over time. This is important, as the software development process is a constantly 

changing process with new technologies, new methods, and new techniques continually being introduced 

and adopted. A good cost estimation technique needs to be able to handle this natural evolution of 

software development. 

Case based reasoning has four distinct aspects: 

• Characterization of cases 

• Storage of past cases 
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• Retrieval of similar cases to use as analogies 

• Utilizing the retrieved case to solve the target case problem, sometimes known as case adaptation. 

First and foremost important in CBR is Case representation. We have n projects or cases, each of which 

needs to be characterized in terms of a set of p features. In addition, we must also know the feature that is 

to be predicted. Features can either be continuous (e.g. experience of the project manager), discrete (e.g. 

the number of interfaces) or categorical (e.g. development environment). In practice, many approaches 

treat discrete features as if they were continuous. Historical project data is collected and added to the case 

base. When a prediction is required for a new project this project is referred to as target case. The target 

case is also characterized in terms of the p features. Incidentally this imposes a constraint on the feature 

set in that it should only contain features for which the values will be known at prediction time. 

                            

 

FEATURES 

IN 

OUT 

INQ 

FILE 

ADJ 

Effort 

Fig 2:Case Representation for IBM Dataset 

  These are the features used for Function Point Analysis [1][4][5][6], which are known at prediction time 

(i.e. time at which requirement document is being written).  

 IN is the number of inputs. Each data input is counted. Data inputs are distinguished from user inquiries 

that are counted separately. 

OUT is the number of outputs. Output refers to reports, screen and error messages etc. Individual data 

items within a report are counted separately. 

INQ is the number of inquiries, which refers to number of distinct interactive queries made by the user, 

which require specific action by the system. 

FILE is the number of files. Each logical file, e.g. groups of logically related data, is counted as a file. 

ADJ is the adjusted value. It depends upon the environment in which the product is to be made.    

Effort is the actual effort obtained. 

The next step is to measure the similarity between the target case and other cases in p-dimensional feature 

space. There are variety of approaches including a number of preference heuristics proposed to measure 

similarity. 
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• Nearest Neighbor Algorithms: these are the most popular and are either based upon 

straightforward distance measures or the sum of squares of differences for each variable. In 

either case each variable must be first standardized (so that it has an equal influence) and then 

weighted according to the degree of importance attached to the feature. Standardization is 

done so that choice of unit has no influence. A common algorithm is given by Aha 

        SIM(C 1 ,C 2 ,P)=
∑

P
jj CCityDissimilarFeature

ε1
21 ),(_

1  

Where P is the set of n features, C 1  and C 2  are cases and 

Feature_Dissimilarity ),( 21 jj CC
⎪
⎩

⎪
⎨

⎧ −

1
0

)( 2
21 jj CC

 

Where 1) the features are numeric, 2) if the features are categorical and jj CC 21 =  and 3) where 

the features are categorical and jj CC 21 ≠ . 

• Manually guided induction: Here an expert manually identifies key features, although this 

reduces some of the advantages of using a CBR system in that an expert is required. 

• Template retrieval: this function in a similar fashion to query by example database interfaces, 

that is the user supplies the values for ranges, and all cases that match retrieved. 

• Goal directed preference: Select cases that have the same goal as the current case. 

• Specificity preference: Select cases that match features exactly over those that matches 

generally. 

• Frequency preference: select cases that are most frequently retrieved. 

• Regency preference: choose recently matched cases over those that have not been matched 

for a period of time. 

• Fuzzy similarity: where concepts such as at-least-as-similar and just noticeable-difference are 

employed. 

• Object-oriented similarity: for complex problem domains it may be necessary to make 

similarity comparisons between differently structured cases. In object-oriented approach 

cases are represented as collections of objects (each object has a set of feature-value pairs) 

organized in a hierarchy of part-of relationships. 

The approach we adopted here is to allow estimators the freedom to utilize those features that they believe 

best characterize their projects and are most appropriate to their environments. Consequently, we used 

Euclidean distance in p-dimensional feature space (Nearest Neighbor Algorithm) as a means of measuring 

similarity between the cases. 
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            The most similar cases or project are then used, possibly with adaptation to generate a prediction 

for the target case. We adopted a simple analogy adaptation strategy of the mean of the k-nearest 

neighbors, where k is an integer such that 0<k< n. when k=1 then the technique is a simple nearest 

neighbor method. As k tends toward n so the prediction approach tends towards merely using the sample 

mean. The estimator determines the choice of k. 

      Once the target case has been completed it can be added to the case base for future use in estimation. 

In this way the cost is estimated using CBR. 

 

Limitations of CBR 

 
 

• Feature and case subset selection- another difficulty for CBR, that is common to all 

machine learning approaches, is that similarity measures retrieve more useful cases when 

extraneous and misleading features are removed. Knowing which features are useful is 

not always obvious for at least three reasons. First the features contained in the feature 

vector are often determined by no more a systematic reason than availability. Second, the 

application domain may not be well understood: there is no deep theory to guide. Third 

the feature standardization used by some similarity measures can be more important than 

others, however, the standardization will assign each feature equal influence 

• Similarity Measures- Similarity measures suffers from a number of disadvantages.    First, 

symbolic or categorical features are problematic. Although there are several algorithms 

that have been proposed to accommodate categorical features, these tends to be fairly 

crude in that they tend to adopt a Boolean approach: features match or fail to match with 

no middle ground. A second criticism of many of these similarity measures is that they 

fail to take into account information which can be derived from structures of data, thus, 

they are weak for higher order feature relationships such as one might expect see 

exhibited in legal systems. 

• There are some problem domains that are not so well suited to CBR. One or more of the 

following can characterize these as follows: 

1. Lack of relevant cases, for example when dealing with an entirely new domain. In 

truth, such situations will be extremely resistant to solution by any technique, 

though one possibility is a divide and conquer strategy so whilst the problem may 

be novel in its entirety, it may be that useful analogies may be sought for some, or 

all its constituents parts. 
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2. Few cases available due to lack of systematically organized data, typically due to 

information not being recorded or being primarily in a natural language format. 

CBR does not deal with large quantities of unstructured text. 

3. The problem domain can be easily modeled and is well understood, for example 

when regression techniques can find simple structural equations that have high 

explanatory power. In such situation it would seem wiser to use the model based 

technique. 

 

Results  

A case representation capturing the available predictive feature is identified and presented from IBM 

dataset [6] having the features as shown in Fig 2. A jack- knifing procedure was adopted for the analogies 

based prediction in earlier research papers, but in our analysis 12 cases were taken as past project data and 

full CBR cycle was applied to the new cases (remaining 12 cases). 

  Accuracy is usually defined in the terms of mean magnitude of relative error (MMRE)[6], which is mean 

of absolute percentage errors: 

           ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=

=
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i

n
100
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or accuracy can defined as measure of mean absolute residual(MAR)[6], which is mean of absolute error. 

 

                     ( )∑ −
=

=

ni

1i n
1PE  

 where there are n projects, E is actual effort and P is the predicted effort. Yet another approach is to use 

Pred(25)[14]] which is the percentage of predictions that fall within 25 percent of the actual value. Clearly 

the choice of accuracy to a large extent depends upon the objectives of those using the prediction system. 

For example MMRE is fairly conservative with a bias against overestimates while Pred(25) will identify 

those prediction systems that are generally accurate but occasionally widely inaccurate. In this paper we 

have decided to adopt MMRE and MAR as prediction performance indicators since they are widely used, 

thereby rendering our results more comparable with those of other workers. 

 
      In this section we organize the results as 

• Use of dissimilarity or distance information to form an effective adaptation strategy. 

• Comparison of software project effort prediction using analogy with an algorithmic approach. 
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a) Use of dissimilarity or distance information to form an effective adaptation strategy. 

           This part of our investigation is concerned with relationship between nearest neighbor (k) and the 

MMRE. k can be dynamically determined as the number of cases that fall within distance d, of the target 

case. Table 1 reveals the accuracy (MMRE) with increasing neighbor (k). 

  

Neighbor(k) MMRE (%) 

1 32.41 

2 72.001 

3 129.45 

4 885.4 

 

Table 1.  k vs. MMRE 
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                                 Fig 3:  Summarizes graphically the data in Table 1. 

Table 2 shows the variation of increasing the neighbor distance (k) with MAR (mean absolute residual). 

 

Neighbor(k) MAR 

1 2.3877 

2 6.308 

3 12.8257 

4 69.07 

                                

Table 2. k vs MAR 
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Fig 4: Summarizes graphically the data in Table 2. 

 

b) Comparison of software project effort prediction using analogy with an algorithmic approach. 

        

  Table 3 shows the accuracy of respective methods using the MMRE when applied on the IBM dataset. 

For CBR, full CBR cycle was applied while taking 12 cases as past project data, and for regression model 

entire dataset was used. Regression technique applied here is stepwise regression. 

 

Dataset CBR 

(MMRE) 

(%) 

Regression 

(MMRE) 

(%) 

IBM Dataset 32.41 90 

 

Table 3. Comparison of CBR with regression technique 

Conclusion 

   Now a day’s software engineering community is experiencing a significant challenge, as the accurate 

estimation of software project must be made at an earlier stage in the development process. We conclude 

that a comprehensive case representation is not available early in the project and suggest instead that the 

objective should be risk assessment rather than cost estimation. The lack of features to predict size early in 

the development life cycle indicates a limitation of conventional CBR model. In this research, we have 

found that the MMRE using CBR is found to be approximately 32% which is quite acceptable compared 

to the MMRE using regression analysis (approx. 90%). Further estimation by analogy helps in 

circumstances where it is not possible to generate an algorithmic model, such as Function points. We 

believe this type of situation is quite common at initial stage of project, for example in response to an 

invitation to a tender this makes analogy very alluring for producing very early estimates. This analogy 

offers an added advantage, as it is very intuitive method.  Our approach is user friendly as it allows them 

to assess the reasoning process behind a prediction by identifying the most analogous projects thereby 

increasing, or reducing, their confidence in the prediction. 
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Future work 

 

   The major thrust is finding the better ways to support collaboration between the human expert and the 

CBR system. For many applications particularly when dealing with infrequent but high value problems 

such as experience factory supported decision-making and project prediction may be inappropriate and 

therefore should be explicitly addresses the problem of how to bring about the most effective forms of 

interaction between the human and the CBR system. 
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