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Abstract 
A Bayesian Neural Network (BNN) based spatial modeling technique is proposed 
here for orebody modeling.  The Bayesian method for posterior probability 
calculation of the output parameter (grades) helps to calculate the uncertainty 
associate with the estimate. The paramatrers of the BNN model is selected by 
grid search algorithm. The expected value and the variance of block support are 
calculated by Markov chain Monte Carlo (MCMC) sampling from the posterior 
distribution at discretize points within the block. The BNN model is validated by 
applying the method in Walker Lake data set and comparing with ordinary kriging 
results. The results revealed that the proposed BNN method perform marginally 
better than ordinary kriging results. The variance map is less smooth than 
ordinary kriging. The proportional effect is also less in BNN-based model than 
ordinary kriging model. 
Keywords: Spatial modeling, posterior distribution, ordinary kriging, uncertainty. 
 
1. Introduction 
Precious materials like gold, platinum etc. frequently occur in narrow, 
discontinuous concentrations. The precious metal deposits are characterized by 
the presence of localized and erratic high grades. The high variability of the data 
due to erratic grade variation presents one of the most challenging tasks for a 
resource estimator.  

In geostatistical ore reserve-estimation methods using ordinary kriging or 
sequential Gaussian simulation, it is assumed that the relationship of ore grade in 
two different locations is a function of distance, with both mean and covariance 
stationary. However, because of such factors as geological structure, deposition 
environment, type of deposit, type of ore, and degree of mineralization, 
stationarity assumptions may not be valid. Apart from that, due to sparseness of 
data, fitting a theoretical variogram is generally difficult. As an outcome, 



geostatistical techniques may produce poor interpolation results when no 
variogram shape is observed from sample data.  Also, the spatial continuity 
modeling needs an in depth knowledge; the practitioner who have very limited 
knowledge in spatial continuity modeling may come up with wrong variogram 
parameters and direction of anisotropy which may leads to wrong interpolated 
results. 

To handle sparseness of data and variogram free spatial modeling, several 
researchers have proposed different non-linear estimation techniques using 
neural network (NN) for ore grade estimation (Samanta et al., 2004 Samanta et 
al., 2005; Chatterjee et al., 2006). Samanta et al. (2004) used MLP (multi-layered 
perceptron) for NN modeling in the Nome offshore deposit and proved the 
superiority of the NN technique over the ordinary kriging technique. The 
attractiveness of the NN technique is that it is flexible and can capture complex 
non-linear relationships between input and output patterns. In addition, other 
information (e.g., rock types, stratigraphy, time, type of formation, etc.) can be 
easily incorporated in a NN model. 

There are limitations, nevertheless, to conventional NN techniques. Neural 
network training, which is data-driven, has a tendency to fit noisy data. This can 
result in over-fitting, which needs to be avoided for better generalization of a 
model. In addition, it is important to address the issue of choosing the most 
suitable values of hidden node size, learning parameter, etc., for a given 
problem. Finally, unlike geostatistical simulation, there is no direct and reliable 
method in the conventional NN model for calculating uncertainties in estimates.  

The aim of this study was to utilize the advantage of NNs in non-linear data 
modeling, with special emphasis on uncertainty calculation and model 
generalization. The focus of this work is on the Bayesian approach to NN training 
(Denison et al., 2002; Bernardo and Smith, 1994), because it takes into account 
uncertainty of estimates through the use of probability distributions.  

2. Bayesian Neural Network Model for Orebody modeling 
2.1 Brief overview of Bayesian Neural Network 
A generalized technique, NN is used for input-output mapping of many systems 
including ore deposits. In orebody modeling, it is assumed that grade values in 
an ore deposit vary from one location to another. There is a complex input-output 
relation between spatial coordinates (northing, easting) and grade values; hence, 
an output grade estimate is considered to be a function of this complex 
relationship between input grade values at sampled spatial coordinates.  



 

Fig 1 Architecture of a 3-layerd neural network model 

A simple three-layer NN (Fig. 1) consists of an input layer, a hidden layer, and an 
output layer, interconnected by modifiable weights represented by links between 
layers. Each input vector is presented to the input layer, and the output of each 
input unit equals the corresponding component in the vector.  

The basic procedure in NN learning is to start with an untrained network, present 
a training pattern to the input layer, pass the signals through the net, and 
determine the output, which is a function of weights. The outputs obtained from 
the model are compared with target output values of the same training pattern; 
any observed difference corresponds to an error. The error function is some 
scalar function of the weights and is minimized so that network outputs match the 
target output. Thus, the weights are adjusted to reduce this measure of error. The 
error (training error) on a pattern to be summed over the output units is the 
squared difference between the target output and network output obtained from 
the model: 
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where K  represents the number of output units and, without loss of generality, 
we can assume only one output unit is present ( 1K ); t  and z represent the 
target and the network output vector; ),...,,( 21 NtttD   represents the target 
output data from the training set, N  represents number of training patterns; 

),...,,( 21 BwwwW   represents weight vector in the network; and B  is the total 
number of weights and biases in the network.  

In traditional NN models, networks are trained by the maximum-likelihood method 
(Bishop, 1996) for minimizing distance between the target output ( t ) and the NN 
model output ( z ) according to Eq. (6). Traditional NN models do not provide a 



confidence interval of estimated values of output variables. Probabilistic 
interpretation in the maximum-likelihood method can be used for the NN learning 
process. Unlike the initialization of single weights during learning in the traditional 
NN model, the BNN model initializes the distribution of weights (Radford, 1996). 
Initialized weight distributions, known as prior distributions, are updated by 
Bayesian rule using training data. Suppose that patterns in a training set are 
independently drawn from a distribution ),( tXp , where ),...,,( 21 dxxxX  , and 

target output t  is a deterministic non-linear function )(Xz , plus zero-mean 
Gaussian noise. The probability of observing a single datum t  for a given input 
vector X can then be defined as 
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where 2/1 v   is a hyper-parameter that controls the noise variance.  

Before Bayesian learning of a MLP neural network, the prior probability 
distribution of the network weights W  needs to be defined. A Gaussian prior 
probability distribution of networks can be defined as 
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where )(BV  is a normalizing constant given by 
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where B  is the total number of weights and biases in the network.  

After choosing the Gaussian model of prior probability distribution of network 
weights and an expression for the likelihood function, the Bayes’ theorem can be 
used to find the posterior probability distribution of network weights. The posterior 
probability distribution of network weights can be obtained as: 
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2.2 Mean and Variance Calculation at Block Support 
To calculate the volume estimation of a deposit, the grade value is required to be 
calculated at block support. To calculate expected block value of a two-
dimensional block, the area is discretized into MM   points. For example, block 
K is discretized into 33, that is, 9 points (Fig. 2). The developed BNN model is 
then applied to all discretized points within the block. The Markov chain Monte 
Carlo (MCMC) sampling (MacKay, 1992) is performed from the posterior 
distribution of Eq. (26) at all discretized points.. To calculate the block mean and 
block variance of block K, the following equations are applied: 
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where Kz  is the expected value of grade at block support, i
jz  is the jth MCMC 

sample from the posterior distribution of network output the BNN model at 
discretized point i , 2M is total discretized points within the block, p is the number 
of MCMC samples from posterior distribution and K  is the block variance. 

3. Model validation 
To validate the proposed Bayesian neural network-based model for spatial 
modeling with uncertainty, the model was applied on one exhaustive data set.  
The well known Walker Lake data set was selected for this purpose (Isaaks and 
Srivastava 1989). The sample data set consists of 470 data points (Isaaks and 
Srivastava 1989) and presented in Figure 2. Although, the regularized term in the 
BNN model helps to reduce model over-fitting, we have performed a cross 
validation study to assure that the developed method is not an over-fitted model. 
To perform the cross-validation study, the sample data set was divided into 
training, validation, and testing data sets. The BNN model was developed using 
the training data, the validation data was used to restrict model over-fitting, and 
the testing data, which was not used at any time during the model development, 
was used for testing the generalization ability of the model. The training data set, 
validation data set, and testing data set consists of 50% (235), 25% (118), and 
25% (117) of the total sample data, respectively. The statistical similarity of these 
three data sets is verified by using the bivariate ANOVA F-test and by comparing 
cumulative distribution functions and basic statistics.  

The BNN model was developed for spatial modeling the parameter V of Walker 
Lake data set. For every sample location, spatial positions (northing, easting) 
were used as input parameters, and V values were used as output for the 
network model. The input data were normalized in the range of zero to one 
before performing network training. Data normalization of input variables results 
in the individual components of the input vector being recognized as equally 
important by the network.  

A three-layer NN model was used in this study. The tan sigmoid and linear 
activation functions (Bishop, 1996) were used at the hidden and output layers, 



respectively. The weight vector was initialized with the Gaussian model of prior 
probability distribution, using hyper-parameters   and  . The initial values of   
and   have a great impact on model performance, so it is important to select 
those values properly according to the algorithm discussed in Section 2.4. Grid 
pattern search method (Bazarra et al. 1993) was implemented to find out best 
initial values of   and  . But searching within such a vast search area is 
computationally expensive. So, coarse grid search was performed for finding the 
zone of minimum error. Then the fine grid search was performed within at 
minimum zone area. The initial values of   and   obtained using grid search 
algorithm are 0.2 and 22, respectively. Although the grid search algorithm is a 
computationally fast algorithm; however, it is not optimum one. The meta-
heuristic algorithm can be applied for searching near optimum hyper-parameters 
in computationally efficient manner; however that is beyond the scope of the 
paper.    
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Figure 2 Sample data set of Walker Lake data 

After initialization, the model was trained using the standard conjugate gradient 
descent algorithm to minimize total error function (Bishop, 1996). For posterior 
calculation, the NN was trained based on Bayesian theory. In each cycle, after a 
given number of epochs, hyper-parameters   and   were re-estimated. The 
number of epochs and number of cycles were kept constant at 100 and 3, 
respectively. In every cycle, the NN model was trained until it reached the 
convergence criteria. Convergence criteria in the BNN were determined by 
observing the mean squared error of the validation data set. The Bayesian 
regularized training algorithm stops the training of the neural network model 
immediately, when validation data error shows an increasing trend, which helps 
to restrict model over-fitting. The training algorithm is assigned with the condition 
that the algorithm will stop if the validation errors started showing an increasing 
trend or no further improvement of the validation error for 15 iterations. 
Therefore, the training stops after 27 epochs since validation error is constant 
after 12 epochs. In each cycle,   and   values were updated. Final values of   



and   were obtained after completion of all cycles. The posterior probability 
distribution of weights of the network along with   and   were then used to 
calculate the mean prediction and standard deviation at unknown points in 
Walker Lake area.  

The performance evaluation of BNN model was carried out by analyzing the error 
statistics of the testing data set. The error of estimates was calculated by 
comparing true test data value with estimated value at the test data location by 
developed BNN model. The mean error, the mean absolute error, the mean 
squared error (MSE), and the coefficient of determination (R2) values were used 
as performance indicators for the model. The error histogram is nearly normally 
distributed with mean 0. Therefore, it can be conclude the proposed BNN method 
is globally unbiased. The error statistics of the testing data set is presented in 
Table 1.  The mean error reveals that the proposed method slightly 
overestimated the true value. The coefficient of determination (0.63) and error 
variance (41102) reveals that the proposed BNN model can explain 63% of the 
test data variance (test data variance is 105051).  

Table 1 Error statistics of testing data set using BNN model 

 Bayesian 
neural network 

Mean error 9.2
Means absolute error 148.2
Mean squared error 41278
Error variance 41102
R2 0.63

 

The conditional un-biasedness of the BNN-based model was examined by 
studying the bivariate distribution of estimated and true values. Fig. 3 represents 
the scatter plot of the true and estimated values of the test data. It is observed 
from the figure the estimated values are reasonably matching the true values and 
they are scattered around the 45-line on the scatter plot. Therefore, it can be 
conclude that the BNN-based method for spatial modeling of the Walker Lake 
data is conditionally un-biased. 

After developing the BNN model of Walker Lake data set, the model is applied for 
estimating the entire area. The area consists of 78,000 points on a 260 x 300 
rectangular grid. At each point, we have calculated the BNN-based estimate, and 
ordinary kriging estimate. The variogram parameters and direction of anisotropy 
for ordinary kriging estimate are taken from Isaaks and Srivastava (1989). The 
summary statistics of true values and two estimated values are presented in 
Table 2. Both the methods produces estimates whose means are higher than the 
mean of the true value. The results revealed that both the estimates are globally 
biased for the Walker Lake date set. However, the globally biasdness is more in 



case of BNN-based model than ordinary kriging. The estimated maps of BNN-
based model and ordinary kriging are presented in Figure 4 
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Figure 3 Scatter plot of true vs. estimated values of testing data set  

The standard deviation of the estimated data reveals that the BNN-based model 
estimates variability close to the true values variability. The ordinary kriging map 
is smoother than BNN-based map. The reason of lees smoothing map in BNN 
modeling is that unlike ordinary kriging the BNN-based model doesn’t combine 
several sample values for estimating at unknown points. It is known that the 
smoothing is a consequence of combining several samples to from an estimate. 

Table 2 Summary statistics of BNN and ordinary kriging models estimates 

 True Bayesian 
neural network 

Ordinary 
Kriging 

Estimated points 78000 78000 78000
Mean 278 281 286
Standard Deviation 249.8 207.6 193.2
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(a) BNN      (b) ordinary kriging 

Figure 4 Estimated maps of Walker Lake date using (a) BNN; and (b) ordinary 
krging 



The error statistics of both the estimates are presented in Table 3. The 
differences observed in the statistics of the estimates are also supported by the 
error statistics. The higher R2 value supports that BNN based model performed 
slightly better than the kriging estimates. The error distributions (Fig 8) of both the 
methods are nearly following the normal distribution with close to zero mean. 

Table 3 Error statistics of true values, estimated values of BNN and ordinary 
kriging models 

 Bayesian 
neural network 

Ordinary kriging 

Mean error 0.22 8.05 
Means absolute error 107 113 
Mean squared error 21040 22380 
Error variance 21041 22315 
R2 0.67 0.64 

 

4. Summary 

A Bayesian neural network-based spatial model is proposed in this paper. The 
spatial coordinates and any other secondary information can be directly used as 
inputs for the BNN model. The hyper-parameters   and   are selected using 
the grid search algorithm. The structure of the BNN is an important factor in 
developing a good model. The main network structure parameter—the number of 
hidden nodes—was determined by a rigorous exercise carried out by changing 
the initial values of the hyper-parameters. The values of selected hyper-
parameters and the number of hidden nodes provide the near optimum network 
model for spatial estimation.  

The model is validated by applying the algorithm in Walker Lake exhaustive data 
set and comparing with ordinary kriging results. The BNN model of Walker Lake 
data reveals that the model is globally unbiased and the model can explain the 
64% of the total data variance. The results also show that the BNN model is 
conditionally unbiased. However, this is a case specific observation. The 
comparative result with ordinary kriging reveals that the BNN model performs 
marginally better than the ordinary kriging. The main advantage of BNN model is 
that it is easy to develop. Unlike kriging, no spatial continuity modeling or spatial 
anisotropy modeling need to be developed. Therefore, any mining engineer or 
geologist with limited exposure to spatial modeling can use the BNN model for 
their deposit evaluation. The results also revealed that the BNN model generates 
less smooth variance map as compared to ordinary kriging map. 
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