
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

41

Performance Analysis of Adaptive Resource

Clustering in Grid

Ashish Chandak

Department of Computer
Science and Engineering,

National Institute of
Technology, Rourkela, India

Bibhudatta Sahoo
Department of Computer

 Science and Engineering,
National Institute of

Technology, Rourkela, India

 Ashok Kumar Turuk
Department of Computer
Science and Engineering,

National Institute of
Technology, Rourkela, India

ABSTRACT

A grid provides abundant resources to the grid users. Task

scheduling is a fundamental issue in grid computing. The

objective of task scheduling is to allocate required resources to

user request. Grid application that requires fast task execution

does not perform well since tasks are assigned according to node

availability not according to node computing capability. In this

paper, we discussed adaptive resource clustering architecture

that virtually grouping same computing capability nodes based

on the number and resource requirement of tasks so that task

execution becomes faster. In this paper, we evaluate the

performance of adaptive clustering with static and without

clustering of resources and task are schedule by Max-Min, Min-

Min, FCFS heuristics and simulation results shows that our

architecture outperforms in makespan and success execution rate

of tasks.

Keywords

Task Scheduling, Adaptive Resource Clustering, Task

Clustering, Success Execution Rate.

1. INTRODUCTION
The demand for computational resources are on the rise for

applications such as in i) medical science viz. drug design

modeling, brain activity analysis, cellular micro physiology, ii)

scientific applications viz. weather forecasting, aerospace

modeling and, iii) commercial application such as stock market

portfolio management. The ever growing demand for

computational requirements of these applications purports the

need of distributed computing which can provide huge

computational infrastructure as well as highly available

resources. Grid has enormous computational capability and

abundant resource availability to support these type of

applications. Grid computing is considered to be a wide area

distributed computing [1, 2] which provides sharing, selection

and aggregation of distributed resources that spans not only

locations but also various organizations, machine architectures

and software boundaries to provide unlimited power,

collaboration and information access to everyone connected to a

grid and makes them use for their computational purpose. One

of the important aspects of a grid is task scheduling. Since there

exists high heterogeneity of resources such as PCs,

Workstations, Clusters in grid which are not only distributed

geographically but also have different time zone, fabric

management policies, scheduling policies, application

requirements and design patterns.

A major issue is how to distribute tasks among nodes. In

traditional scheduling, tasks are assigned to any of the available

nodes. Scheduling in multiprocessors has been also studied in

[18, 17, 16, 13]. Grid application that requires fast task

execution does not perform well since tasks are assigned

according to node availability not according to node computing

capability. Resource clustering along with task clustering is

considered to be of great significance with regard to

performance issue. Resource clustering is defined as coalition of

same type of resources while task clustering is defined as the

coalition of several fine grained tasks.

Task clustering mechanism is employed in [13, 14] while [5]

address adaptive resource provisioning with a focus primarily on

resource sharing and container level resource management. [6]

were one of several groups to explore dynamic resource

provisioning within a data center. Bresnahan et al. [12] describe

a multi-level scheduling architecture specialized for the dynamic

allocation of compute cluster bandwidth.

In summary, what distinguishes our work from others is use of

task clustering in combination with adaptive resource clustering.

Our architecture first clusters same resource requirement tasks

and based upon number of tasks it cluster identical computing

capability resources. If there are n resources then our

architecture divides resources into three types viz. I/O,

computational, data and tasks are mapped according to resource

requirement. We evaluated the performance of adaptive

clustering with static and without clustering of resources in

terms of makespan and success execution rate of tasks and this

combination of technique allow us to achieve lower makespan,

high success execution rate of tasks.

The rest of the paper is organized as follows. We presented

problem description in Section 2. Proposed solution for adaptive

resource clustering which contains architecture is presented in

Section 3. Performance evaluation of adaptive resource

clustering is presented in Section 4. Finally, some conclusions

are drawn in Section 5.

2. PROBLEM STATEMENT
In traditional scheduling, grid scheduler randomly selects a site

with enough available resources to allocate the needed

resources. This strategy of dispatching task to any of available

site has two disadvantages i) Since each node has specific

computing capability task execution might be slow if task is not

assigned to particular node. ii) If task are not assigned according

to its resource requirement then system performance decreases

and it is not full utilization of resources. To overcome this

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

42

situation, we use static clustering in which same computing

capability nodes are cluster from beginning regardless number

of tasks as shown in Fig 1. But this approach has also

disadvantages i) since resources are cluster regardless of number

of task, if more number of task come of same type then system

performance decreases. To overcome both situations we use

adaptive clustering concept in which resources are cluster

according to task number. Our model first cluster same resource

requirement task and based upon number of task it cluster

identical computing capability resources as shown in Fig 2. In

general, scheduling algorithms have to deal with resource

assignment to tasks and resource assignment refers to the

selection of resources. In this paper, we focus on the resource

assignment part. Regarding resource assignment, there are

immediate mode and batch mode scheduling algorithms.

Immediate mode algorithms schedule jobs as soon as they arrive

in the system [8]. On the other hand, batch mode algorithms

allocate a batch of jobs which are in the queue of the scheduler

[9]. Batch mode method is taken into account in this paper.

Figure 1. Static Resource Clustering

Figure 2. Adaptive Resource Clustering

3. PROPOSED SOLUTION

3.1 Architecture for Adaptive Resource

Clustering
We consider following assumptions about task.

a) All tasks are independent.

b) Tasks are non preemptive: their execution on a node

cannot be suspended until completion..

c) All nodes have the different computing capability.

d) Tasks are clairvoyant as their service demand are

known to schedulers.

Components of adaptive resource clustering architecture:-

a) Site Information System (SIS)}:- It gathers the

following information about each site Si.

1) Identity of site Si.

2) Status of the site Si.

3) The total load at the site Si.

4) Computation capability of each node of

every site Si.

b) Global Task Database (GTD):- This stores information

about each task. The following attribute about a task is

maintained at GTD:-

1) User Request Identity (Owner of the task).

2) Arrival time of the task.

3) Expected execution time required by the

task.

4) Task resource requirement.

c) Task Clustering Agent (TCA): - It clusters same type

of tasks viz. I/O, Data and/or Computational.

d) Task Distribution Manager (TDM):- It dispatches

tasks to resource clusters.

e) Task Matchmaker (TMM):- Matching of resource

cluster to a particular task cluster is done by TMM.

f) Adaptive Resource Management (ARM):- It cluster

resources of same type {\it viz} I/O, data and/or

computational based upon number of tasks. It decides

number of resources required based on number of

tasks. ARM will decide when to acquire resource and

length of time for which resource should be required.

ARM query SIS for resource information. ARM also

decides about resource release policy. Resource

acquisition and release policy are independent events.

The architecture for adaptive resource clustering is shown in

Fig. 3 and sequence diagram for architecture is shown in Fig. 4.

We represent the grid system as a M/M/s: N/FCFS queuing

model where: M - represents exponential inter arrival times

between tasks, M - represents exponential execution time of

tasks, s - represents number of computing sites, N - represents

capacity of system i.e maximum task allowed in the system (this

includes executing task plus waiting task) , FCFS - represents

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

43

Figure 3. Architecture for Task Mapping on Adaptive Resource Cluster

Figure 4 Sequence diagram for Adaptive Resource Clustering

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

44

First Come First Serve queue discipline.

Let i be the rate of arrival of task from each grid user i at the

grid scheduler. Assuming that there are j number of grid user,

the total rate at which task arrive at the grid scheduler

j

i

ii

1

 Let i be the rate at which a task is served at

each site i. We assume that the service rate is independent and

identically distributed. The combined service rate of all sites in a

grid is

n

i

i

1

 . Our queuing model is characterized by

following parameters :-

n - Number of tasks in the system.

 - Arrival rate of tasks.

 - Service rate of tasks.

 - The expected fraction of time the sites are busy i.e.

Utilization factor is given by s .

Then, steady state probability of having n tasks in the system as

given by [3]

Pn = (sρ)n P0 /n! for 0 ≤ n ≤ s

 = (sρ) n P0 /s! for s ≤ n ≤ N

 = 0 for n > N

Where P0 is written as

P0 = [

s

n 0

(sρ)n/ n! +

N

sn

(sρ) n/ s! (sn-s)] -1

Expected task queue length i.e. expected number of tasks in the

task queue given by [3]

Lq =

N

sn

(n-s) Pn

= (sρ) s P0 ρ / (s! (1- ρ)2)

[(1- ρN-s+1) - (1- ρ) (N-s+1) ρN-s]

We consider resource heterogeneity, which is node differs in

processing capabilities. The resource heterogeneity is

characterized by various computing capabilities. Nodes with

identical processing capabilities are grouped into a type.

Suppose there are n different types of nodes and N= {1, 2, 3,

…….., n }. Each node Pi, i ε N is specified by three tuple (Pi, µi,

θi) where µi, θi are processing speed and number of nodes of

type Pi.

Total number of nodes is given by θ = Ni θi

Each node in the system is identified by a node id. The node ids

of type N1 are (P1, P2, P3, …, Pn) and those of type N2

(11P , 22P , 33P …… nnP).The processing model is

shown in Fig. 4. When tasks arrive to central queue then, they

are categorized into three types I/O, Computational and Data

type by task clustering agent. Adaptive resource manager does

adaptive clustering of resources based on number of tasks and

task distribution manager will assign task to different groups.

Task system is partitioned such that

Ti= { Ti ε T| Ti =I/O}

Tj= { Tj ε T| Tj = Computational}

Tk= { Tk ε T| Tk = Data}

4. PERFORMANCE EVALUATION

4.1 Simulation Model
We developed a simulation application in matlab to carry out the

experiments. Each simulation experiment ends when 1000 jobs

executions are completed. Fig. 3 shows the simulation model

which consist of nine nodes each having different computing

capability. The arrival of tasks is modeled as Poisson random

process. To evaluate performance we have considered following

three types of tasks: a) I/O intensive tasks b) Data intensive

tasks c) Computational intensive tasks. We evaluate

performance of without clustering, static clustering and adaptive

clustering of resources and tasks are schedule using simple

heuristic viz. Max- Min, Min-Min and FCFS heuristics.

4.2 Performance Metrics
The purpose of performance comparison is to quantitatively

evaluate the improvement that system would experience using

adaptive resource clustering in comparison to the static

clustering and without clustering. The parameter to be studied

are as follows:

i) Makespan: - Makespan is calculated as maximum of

completion time. [10].

MK=max (CTjobs) Where, CT- completion time

ii) Successful execution rate: -
 ni

i

n
0

 where 1i if

Tc ≥ Td

0i if Tc ≤ Td

 Here, Td and Tc denote deadline and completion time of Task

Ji, respectively. [11].

4.3 Makespan Results
Table 1, 2 and 3 shows the comparison of makespan with Max

Min, Min Min and FCFS heuristics. Scheduling task using Max-

Min heuristic in adaptive clustering gives 28$\%$ and 18$\%$

better makespan than without clustering and static clustering

respectively. Scheduling task using Min-Min heuristic in

adaptive clustering gives 31% and 28% better makespan than

without clustering and static clustering respectively. By using

FCFS heuristic for task scheduling in adaptive clustering gives

35% and 26% better makespan than without clustering and static

clustering respectively. Overall adaptive clustering gives better

makespan than static and without clustering. without clustering

and static clustering respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

45

Table 1 Makespan Comparison in Max-Min

Tasks

Makespan in Seconds Improvement

Without

Clustering

Static

Clustering

Adaptive

Clustering

Over

without

clustering

Over static

clustering

100 76 95 59 22 38

200 151 172 114 25 34

300 228 178 109 52 39

400 293 236 171 42 28

500 370 294 202 45 31

600 451 366 213 53 42

700 514 612 391 24 36

800 593 569 476 20 16

900 656 508 430 34 15

1000 721 591 423 41 28

Overall

Improvement

in %

36

30

Table 2 Makespan Comparison in Min-Min

Tasks

Makespan in Seconds Improvement

Without

Clustering

Static

Clustering

Adaptive

Clustering

Over

without

clustering

Over static

clustering

100 76 89 56 26 59

200 146 122 92 37 24

300 221 168 125 43 24

400 295 233 186 37 25

500 366 288 225 39 28

600 440 340 302 31 13

700 490 481 389 21 24

800 585 677 434 26 56

900 670 508 452 33 12

1000 740 710 583 22 21

Overall

Improvement

in %

31

28

Figure 5 Makespan Comparison in Max Min

Figure 6 Makespan Comparison in Min Min

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

46

Table 3 Makespan Comparison in FCFS

Tasks

Makespan in Seconds Improvement

Without

Clustering

Static

Clustering

Adaptive

Clustering

Over

without

clustering

Over static

clustering

100 75 72 53 29 26

200 156 187 127 19 32

300 220 153 125 43 18

400 311 241 188 40 22

500 368 536 310 16 42

600 450 349 221 51 37

700 516 406 292 43 28

800 588 460 339 42 26

900 669 514 468 30 9

1000 730 569 455 38 20

Overall

Improvement

in %

35

26

4.4 Success Execution Rate Results
Success execution rate are shown in Fig. 8, 9, 10. We can

see from the results that adaptive clustering gives better

success execution rate as compared to static and without

clustering when task are schedule using Max-Min, Min-

Min and FCFS heuristics..

Figure 7 Makespan Comparison in FCFS

5. CONCLUSION
In this paper, we evaluated performance of adaptive

resource clustering technique to enhance speed of task

execution. In simulation experiments, we implement

adaptive resource clustering and compare with static and

without clustering of resource. Our strategy exploits

effectiveness of adaptive resource clustering over static and

without clustering. Table 1, 2 and 3 shows the comparison

of makespan with Max-Min, Min-Min and FCFS heuristics.

Task scheduling using Max-Min heuristic in adaptive

resource clustering gives 28% and 18% better makespan

than without clustering and static clustering of resources

respectively while task scheduling using Min-Min heuristic

in adaptive resource clustering gives 31% and 28% better

makespan than without clustering and static clustering of

resources respectively. Scheduling task by FCFS heuristic

in adaptive clustering gives 35% and 26% better makespan

than without clustering and static clustering respectively.

From Fig. 8, 9, 10 we can conclude that success execution

rate of tasks gets increased when tasks are scheduled in

adaptive clustering environment. This confirms superiority

of adaptive resource clustering over static and without

clustering of resources.

Figure 8 Success Execution Rate in Max Min

Figure 9 Success Execution Rate in Min Min

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.9, September 2011

47

Figure 10 Success Execution Rate in FCFS

6. REFERENCES
[1] Ian Foster, Carl Kesselman, and Steven Tuecke, The

anatomy of the grid: Enabling scalable virtual

organizations, International Journal High Performane

Computing Application 15, 200-222, 2001.

[2] Carl Kesselman Ian Foster. The Grid 2: Blueprint for a

New Computing Infrastructure. ELSEVIER, Second

edition.

[3] S D Sharma. Operation Research. Kedar Nath Ram

Nath and Co, Fourteenth edition, 2001.

[4] Tracy D. Braun, Howard Jay Siegel, and Noah Beck,

A Comparison of Eleven Static Heuristics for

Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems,

Journal of Parallel and Distributed Computing, 810-

837, 2001.

[5] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A.

Yumerefendi, J. Chase. Toward a Doctrine of

Containment: Grid Hosting with Adaptive Resource

Control. IEEE/ACM SuperComputing.

[6] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.

Kalantar, S. Krishnakumar, D. Pazel, J. Pershing, and

B. Rochwerger, Oceano - SLA Based Management of

a Computing Utility, In 7th IFIP/IEEE International

Symposium on Integrated Network Management.

[7] Y. He, W.J. Hsu, C.E. Leiserson, Provably efficient

online nonclairvoyant adaptive scheduling, IEEE

Trans. Parallel Distrib. Syst. 19, 1263-1279, 2008.

[8] F. Xhafa, L. Barolli, A. Durresi, Immediate mode

scheduling of independent jobs in computational grids,

in: Proceedings of the 21st International Conference

on Advanced Networking and Applications (AINA

'07), IEEE, 970-977, 2007.

[9] F. Xhafa, L. Barolli, A. Durresi, Batch mode

scheduling in grid systems, Int. J. Web Grid Serv. 3

19-37, 2007.

[10] Kobra Etminani, M. Naghibzadeh, A Min-Min Max-

Min Selective Algorihtm for Grid Task Scheduling.,

ICI 2007. 3rd IEEE/IFIP International Conference in

Central Asia, 2007.

[11] Hesam Izakian and Ajith Abraham and Behrouz Tork

Ladani, An Auction Method for Resource Allocation

in Computational Grids, Future Generation Computer

Systems, 26, 228 - 235, 2010.

[12] J. Bresnahan, I. Foster. An Architecture for Dynamic

Allocation of Compute Cluster Bandwidth, MS

Thesis, Department of Computer Science, University

of Chicago, December 2006.

[13] H.D. Karatza, A simulation model of task cluster

scheduling in distributed systems, in: Proceedings of

the 7th IEEE Workshop on Future Trends of

Distributed Computing Systems (FTDCS’99),

December 20–22, 1999, Cape Town, IEEE Computer

Society Press, 163–168, 1999.

[14] Kyriaki Gkoutioudi, Helen D. Karatza, Task cluster

scheduling in a grid system, Simulation Modelling

Practice and Theory, 18, 1242–1252, 2010.

[15] A. Gerasoulis, T. Yang, On the granularity and

clustering of directed acyclic task graphs, IEEE

Transactions on Parallel and Distributed Systems 4

(6), 686–701, 1993.

[16] S.P. Dandamudi, Performance implications of task

routing and task scheduling strategies for

multiprocessor systems, in: Proceedings of the IEEE

Euromicro Conference on Massively Parallel

Computing Systems, Ischia, Italy, 348–353, 1994.

[17] H.D. Karatza, A Comparative analysis of scheduling

policies in a distributed system using simulation,

International Journal of Simulation Systems, Science

and Technology 1, 12–20, 2000.

[18] L.W. Dowdy, E. Rosti, G. Serazzi, E. Smirni,

Scheduling Issues in high-performance computing,

Performance Evaluation Review 26, 60–69, 1999.

