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ABSTRACT 

A grid provides abundant resources to the grid users. Task 

scheduling is a fundamental issue in grid computing. The 

objective of task scheduling is to allocate required resources to 

user request. Grid application that requires fast task execution 

does not perform well since tasks are assigned according to node 

availability not according to node computing capability. In this 

paper, we discussed adaptive resource clustering architecture 

that virtually grouping same computing capability nodes based 

on the number and resource requirement of tasks so that task 

execution becomes faster. In this paper, we evaluate the 

performance of adaptive clustering with static and without 

clustering of resources and task are schedule by Max-Min, Min-

Min, FCFS heuristics and simulation results shows that our 

architecture outperforms in makespan and success execution rate 

of tasks.   
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1. INTRODUCTION 
The demand for computational resources are on the rise for 

applications such as in i) medical science viz. drug design 

modeling, brain activity analysis, cellular micro physiology, ii) 

scientific applications viz. weather forecasting, aerospace 

modeling and, iii) commercial application such as stock market 

portfolio management. The ever growing demand for 

computational requirements of these applications purports the 

need of distributed computing which can provide huge 

computational infrastructure as well as highly available 

resources. Grid has enormous computational capability and 

abundant resource availability to support these type of 

applications. Grid computing is considered to be a wide area 

distributed computing [1, 2] which provides sharing, selection 

and aggregation of distributed resources that spans not only 

locations but also various  organizations, machine architectures 

and software boundaries to provide unlimited power, 

collaboration and information access to everyone connected to a 

grid and makes them use for their computational purpose. One 

of the important aspects of a grid is task scheduling. Since there 

exists high heterogeneity of resources such as PCs, 

Workstations, Clusters in grid which are not only distributed 

geographically but also have different time zone, fabric 

management policies, scheduling policies, application 

requirements and design patterns. 

A major issue is how to distribute tasks among nodes. In 

traditional scheduling, tasks are assigned to any of the available 

nodes. Scheduling in multiprocessors has been also studied in 

[18, 17, 16, 13]. Grid application that requires fast task 

execution does not perform well since tasks are assigned 

according to node availability not according to node computing 

capability. Resource clustering along with task clustering is 

considered to be of great significance with regard to 

performance issue. Resource clustering is defined as coalition of 

same type of resources while task clustering is defined as the 

coalition of several fine grained tasks. 

Task clustering mechanism is employed in [13, 14] while [5] 

address adaptive resource provisioning with a focus primarily on 

resource sharing and container level resource management. [6] 

were one of several groups to explore dynamic resource 

provisioning within a data center. Bresnahan et al. [12] describe 

a multi-level scheduling architecture specialized for the dynamic 

allocation of compute cluster bandwidth. 

In summary, what distinguishes our work from others is use of 

task clustering in combination with adaptive resource clustering. 

Our architecture first clusters same resource requirement tasks 

and based upon number of tasks it cluster identical computing 

capability resources. If there are n resources then our 

architecture divides resources into three types viz. I/O, 

computational, data and tasks are mapped according to resource 

requirement. We evaluated the performance of adaptive 

clustering with static and without clustering of resources in 

terms of makespan and success execution rate of tasks and this 

combination of technique allow us to achieve lower makespan, 

high success execution rate of tasks. 

The rest of the paper is organized as follows. We presented 

problem description in Section 2. Proposed solution for adaptive 

resource clustering which contains architecture is presented in 

Section 3. Performance evaluation of adaptive resource 

clustering is presented in Section 4. Finally, some conclusions 

are drawn in Section 5. 

2.  PROBLEM STATEMENT 
In traditional scheduling, grid scheduler randomly selects a site 

with enough available resources to allocate the needed 

resources. This strategy of dispatching task to any of available 

site has two disadvantages i) Since each node has specific 

computing capability task execution might be slow if task is not 

assigned to particular node. ii) If task are not assigned according 

to its resource requirement then system performance decreases 

and it is not full utilization of resources. To overcome this 
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situation, we use static clustering in which same computing 

capability nodes are cluster from beginning regardless number 

of tasks as shown in Fig 1. But this approach has also 

disadvantages i) since resources are cluster regardless of number 

of task, if more number of task come of same type then system 

performance decreases. To overcome both situations we use 

adaptive clustering concept in which resources are cluster 

according to task number. Our model first cluster same resource 

requirement task and based upon number of task it cluster 

identical computing capability resources as shown in Fig 2. In 

general, scheduling algorithms have to deal with resource 

assignment to tasks and resource assignment refers to the 

selection of resources. In this paper, we focus on the resource 

assignment part. Regarding resource assignment, there are 

immediate mode and batch mode scheduling algorithms. 

Immediate mode algorithms schedule jobs as soon as they arrive 

in the system [8]. On the other hand, batch mode algorithms 

allocate a batch of jobs which are in the queue of the scheduler 

[9].  Batch mode method is taken into account in this paper.  

 

 

Figure 1. Static Resource Clustering 

 

 

 

Figure 2. Adaptive Resource Clustering 

 

3.  PROPOSED SOLUTION 

3.1 Architecture for Adaptive Resource 

Clustering 
We consider following assumptions about task.  

a) All tasks are independent. 

b) Tasks are non preemptive: their execution on a node 

cannot be suspended until completion..  

c) All nodes have the different computing capability.  

d) Tasks are clairvoyant as their service demand are 

known to schedulers.  

Components of adaptive resource clustering architecture:- 

a) Site Information System (SIS)}:- It gathers the 

following information about each site Si. 

1) Identity of site Si. 

2) Status of the site Si. 

3) The total load at the site Si. 

4) Computation capability of each node of 

every site Si. 

b) Global Task Database (GTD):- This stores information 

about each task. The following attribute about a task is 

maintained at GTD:- 

1) User Request Identity (Owner of the task). 

2) Arrival time of the task. 

3) Expected execution time required by the 

task. 

4) Task resource requirement. 

c) Task Clustering Agent (TCA): - It clusters same type 

of tasks viz. I/O, Data and/or Computational. 

d) Task Distribution Manager (TDM):- It dispatches 

tasks to resource clusters. 

e) Task Matchmaker (TMM):- Matching of resource 

cluster to a particular task cluster is done by TMM. 

f) Adaptive Resource Management (ARM):- It cluster 

resources of same type {\it viz} I/O, data and/or 

computational based upon number of tasks. It decides 

number of resources required based on number of 

tasks. ARM will decide when to acquire resource and 

length of time for which resource should be required. 

ARM query SIS for resource information. ARM also 

decides about resource release policy. Resource 

acquisition and release policy are independent events. 

The architecture for adaptive resource clustering is shown in 

Fig. 3 and sequence diagram for architecture is shown in Fig. 4. 

We represent the grid system as a M/M/s: N/FCFS queuing 

model where: M - represents exponential inter arrival times 

between tasks, M - represents exponential execution time of 

tasks, s - represents number of computing sites, N - represents 

capacity of system i.e maximum task allowed in the system (this 

includes executing task plus waiting task) , FCFS - represents
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Figure 3. Architecture for Task Mapping on Adaptive Resource Cluster 

 

Figure 4 Sequence diagram for Adaptive Resource Clustering
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First Come First Serve queue discipline.  

Let i  be the rate of arrival of task from each grid user i at the 

grid scheduler. Assuming that there are j number of grid user, 

the total rate   at which task arrive at the grid scheduler 





j

i

ii

1

  Let i  be the rate at which a task is served at 

each site i. We assume that the service rate is independent and 

identically distributed. The combined service rate of all sites in a 

grid is 



n

i

i

1

 . Our queuing model is characterized by 

following parameters :- 

n - Number of tasks in the system. 

 - Arrival rate of tasks. 

 - Service rate of tasks. 

 - The expected fraction of time the sites are busy i.e. 

Utilization factor is given by  s . 

Then, steady state probability of having n tasks in the system as 

given by [3] 

Pn = (sρ)n P0 /n!                           for 0 ≤ n ≤ s 

   = (sρ) n  P0 /s!                           for s ≤ n ≤ N 

   = 0                                           for n > N 

Where P0 is written as 

P0 = [  


s

n 0

(sρ)n/ n! + 


N

sn

(sρ) n/ s! (sn-s)] -1 

Expected task queue length i.e. expected number of tasks in the 

task queue given by [3] 

Lq = 


N

sn

(n-s) Pn  

= (sρ) s P0 ρ / (s! (1- ρ)2)  

[(1- ρN-s+1) - (1- ρ)    (N-s+1) ρN-s] 

We consider resource heterogeneity, which is node differs in 

processing capabilities. The resource heterogeneity is 

characterized by various computing capabilities. Nodes with 

identical processing capabilities are grouped into a type. 

Suppose there are n different types of nodes and N= {1, 2, 3, 

…….., n }. Each node Pi, i ε N is specified by three tuple (Pi, µi, 

θi) where µi, θi are processing speed and number of nodes of 

type Pi. 

Total number of nodes is given by θ = Ni  θi   

Each node in the system is identified by a node id. The node ids 

of type N1 are (P1, P2, P3, …, Pn) and those of type N2 

( 11P , 22P , 33P …… nnP ).The processing model is 

shown in Fig. 4. When tasks arrive to central queue then, they 

are categorized into three types I/O, Computational and Data 

type by task clustering agent. Adaptive resource manager does 

adaptive clustering of resources based on number of tasks and 

task distribution manager will assign task to different groups. 

Task system is partitioned such that  

Ti= { Ti ε T| Ti =I/O} 

Tj= { Tj ε T| Tj = Computational} 

Tk= { Tk ε T| Tk = Data} 

4. PERFORMANCE EVALUATION 

4.1 Simulation Model 
We developed a simulation application in matlab to carry out the 

experiments. Each simulation experiment ends when 1000 jobs 

executions are completed. Fig. 3 shows the simulation model 

which consist of nine nodes each having different computing 

capability. The arrival of tasks is modeled as Poisson random 

process. To evaluate performance we have considered following 

three types of tasks: a) I/O intensive tasks b) Data intensive 

tasks c) Computational intensive tasks. We evaluate 

performance of without clustering, static clustering and adaptive 

clustering of resources and tasks are schedule using simple 

heuristic viz. Max- Min, Min-Min and FCFS heuristics.  

4.2 Performance Metrics 
The purpose of performance comparison is to quantitatively 

evaluate the improvement that system would experience using 

adaptive resource clustering in comparison to the static 

clustering and without clustering.  The parameter to be studied 

are as follows:  

i) Makespan: - Makespan is calculated as maximum of 

completion time. [10]. 

MK=max (CTjobs) Where, CT- completion time 

ii) Successful execution rate: - 
 ni

i

n
0


  where  1i  if 

Tc  ≥ Td                                                                                

0i  if Tc  ≤  Td 

 Here, Td and Tc denote deadline and completion time of Task 

Ji, respectively. [11]. 

4.3 Makespan Results 
Table 1, 2 and 3 shows the comparison of makespan with Max 

Min, Min Min and FCFS heuristics. Scheduling task using Max-

Min heuristic in adaptive clustering gives 28$\%$ and 18$\%$ 

better makespan than without clustering and static clustering 

respectively. Scheduling task using Min-Min heuristic in 

adaptive clustering gives 31% and 28% better makespan than 

without clustering and static clustering respectively. By using 

FCFS heuristic for task scheduling in adaptive clustering gives 

35% and 26% better makespan than without clustering and static 

clustering respectively. Overall adaptive clustering gives better 

makespan than static and without clustering. without clustering 

and static clustering respectively. 
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Table 1   Makespan Comparison in Max-Min 

Tasks 

Makespan in Seconds Improvement 

Without 

Clustering 

Static 

Clustering 

Adaptive 

Clustering 

Over 

without 

clustering 

Over static 

clustering 

100 76 95 59 22 38 

200 151 172 114 25 34 

300 228 178 109 52 39 

400 293 236 171 42 28 

500 370 294 202 45 31 

600 451 366 213 53 42 

700 514 612 391 24 36 

800 593 569 476 20 16 

900 656 508 430 34 15 

1000 721 591 423 41 28 

Overall 

Improvement 

in % 

    

36 

 

30 

 

Table 2   Makespan Comparison in Min-Min 

Tasks 

Makespan in Seconds Improvement 

Without 

Clustering 

Static 

Clustering 

Adaptive 

Clustering 

Over 

without 

clustering 

Over static 

clustering 

100 76 89 56 26 59 

200 146 122 92 37 24 

300 221 168 125 43 24 

400 295 233 186 37 25 

500 366 288 225 39 28 

600 440 340 302 31 13 

700 490 481 389 21 24 

800 585 677 434 26 56 

900 670 508 452 33 12 

1000 740 710 583 22 21 

Overall 

Improvement 

in % 

    

31 

 

28 

 

Figure 5 Makespan Comparison in Max Min 

 

Figure 6 Makespan Comparison in Min Min 
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Table 3   Makespan Comparison in FCFS 

Tasks 

Makespan in Seconds Improvement 

Without 

Clustering 

Static 

Clustering 

Adaptive 

Clustering 

Over 

without 

clustering 

Over static 

clustering 

100 75 72 53 29 26 

200 156 187 127 19 32 

300 220 153 125 43 18 

400 311 241 188 40 22 

500 368 536 310 16 42 

600 450 349 221 51 37 

700 516 406 292 43 28 

800 588 460 339 42 26 

900 669 514 468 30 9 

1000 730 569 455 38 20 

Overall 

Improvement 

in % 

    

35 

 

26 

 

4.4 Success Execution Rate Results 
Success execution rate are shown in Fig. 8, 9, 10. We can 

see from the results that adaptive clustering gives better 

success execution rate as compared to static and without 

clustering when task are schedule using Max-Min, Min-

Min and FCFS heuristics.. 

 

Figure 7 Makespan Comparison in FCFS 

5. CONCLUSION 
In this paper, we evaluated performance of adaptive 

resource clustering technique to enhance speed of task 

execution. In simulation experiments, we implement 

adaptive resource clustering and compare with static and 

without clustering of resource.  Our strategy exploits 

effectiveness of adaptive resource clustering over static and 

without clustering. Table 1, 2 and 3 shows the comparison 

of makespan with Max-Min, Min-Min and FCFS heuristics. 

Task scheduling using Max-Min heuristic in adaptive 

resource clustering gives 28% and 18% better makespan 

than without clustering and static clustering of resources 

respectively while task scheduling using Min-Min heuristic 

in adaptive resource clustering gives 31% and 28% better 

makespan than without clustering and static clustering of  

 

resources respectively. Scheduling task by FCFS heuristic 

in adaptive clustering gives 35% and 26% better makespan 

than without clustering and static clustering respectively. 

From Fig. 8, 9, 10 we can conclude that success execution 

rate of tasks gets increased when tasks are scheduled in 

adaptive clustering environment. This confirms superiority 

of adaptive resource clustering over static and without 

clustering of resources. 

 

 
Figure 8 Success Execution Rate in Max Min 

 
Figure 9 Success Execution Rate in Min Min 
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Figure 10 Success Execution Rate in FCFS 
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