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Abstract This paper deals with a numerical solution of the
two-dimensional convection-diffusion equation in an infi-
nite domain, arising out of quenching of an infinite tube. On
the wetted side, upstream of the quench front, a constant
heat transfer coefficient is assumed. The downstream of the
quench front as well as the inside surface of the tube are
assumed to be adiabatic. The solution gives the quench front
temperature as a function of various model parameters such
as Peclet number, Biot number and the radius ratio. The
solution has been found to be in good agreement with the
available analytical solutions and thus validates the nu-
merical procedure suggested.

List of symbols

Bi  Biot number

C specific heat

h heat transfer coefficient
k thermal conductivity

L length of the tube

Pe  Peclet number

t time

T temperature

u quench front velocity

z  physical coordinates
z coordinates in quasi-steady state
R,Z dimensionless coordinates in quasi-steady state

r
r

o stretching parameter

0 radius ratio

o density

0 dimensionless temperature

&,n  coordinates after infinite-finite transformation
Subscripts

0 quench front

s saturation

w wall condition
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Introduction

The process of quenching of hot surfaces is of practical
importance in nuclear and metallurgical industries. For

instance, after a hypothetical loss-of-coolant accident
(LOCA) in water cooled reactors, the temperature of the
clad surface of the fuel elements would increase drastically
because the stored energy in the fuel cannot be removed
adequately by the surrounding steam. In order to prevent
the fuel from reaching a metallurgically prohibitive tem-
perature, an emergency core cooling system is activated to
reflood the core. The time delay in re-establishing effective
cooling may result in a cladding temperature rise, signif-
icantly above the saturation temperature. If the cladding
temperature rises above the rewetting temperature, a sta-
ble vapor blanket will prevent the immediate return to
liquid-solid contact. Rewetting is the re-establishment of
liquid contact with a hot cladding surface and, thereby,
bringing it to an acceptable temperature. The quenching
phenomenon also exists in numerous industrial applica-
tions, such as steam generators, evaporators, cryogenic
systems and metallurgical processing.

The cooling process during quenching is characterized
by the formation of a wet patch on the hot surface, which
eventually develops into a steadily moving quench front.
As the quench front progresses along the hot solid, the
upstream end of the solid is cooled by convection to the
contacting liquid, while its downstream end is cooled by
heat transfer to the mixture of vapor and entrained liquid
droplets, called precursory cooling. In situations such as
low flow rates and top flooding in an open geometry,
precursory cooling may be neglected. Besides, from a
modeling point of view, even in case of bottom flooding
where precursory cooling is important, one may neglect it
and compensate it by selecting a higher value of wetside
heat transfer coefficient.

The rewetting model for a two-dimensional two-region
heat transfer with a step change in heat transfer coefficient at
the quench front has been solved for a single slab (Olek
1988), for a composite slab (Olek 1994), for a single rod
(Evans 1984) and for composite cylinder (Olek 1989). In the
single slab/tube model the unwetted side is considered to be
adiabatic, whereas in case of a composite slab/tube a three
layer composite is considered to simulate the fuel and the
cladding separated by a gas filled gap between them. The
rewetting model in a slab geometry with boundary heat flux
has been solved by Yao (1977) and Chan and Zhang (1994).
The solution methods commonly employed are either
separation of variables or Wiener-Hopf technique and the
solutions have been obtained for either quench front tem-
perature or quench front velocity.

In the present study, the physical system consists of an
infinitely extended vertical tube with outer surface flooded
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and the inside surface insulated. The model assumes a
constant heat transfer coefficient for the wet region whereas
the dry region on the flooded side is assumed to be adiabatic.
The two-dimensional quasi-steady conduction equation
governing conduction-controlled rewetting of the infinite
tube has been solved by finite difference method. The nu-
merical model is validated by comparing the results with
known closed form solutions. The numerical procedure
proposed herewith may be effectively extended to solve the
class of rewetting problems that may involve precursory
cooling in the dry region or heat flux in the core.

The numerical solution of the rewetting problem en-
counters two major difficulties: first, the infinite domain of
the tube and prescription of the temperature at an infinite
boundary. This problem is alleviated by transforming the
infinite physical domain to a finite computational domain
by a suitable mapping function. The value of the stretching
parameter, assigned to the mapping function, has been
found by minimizing the overall heat balance. Second, a
jump in the boundary condition at the quench front yields
a singularity as observed by Blair (1975) and Olek (1988)
in the analytical solutions. In the context of the present
numerical treatment, the presence of this singularity may
give rise to an accuracy problem. This has been overcome
by imposing the continuity matching condition for both
the temperature and the heat flux at the quench front as
described in the text. The numerical solution involves the
control volume discretization formulation with power law
scheme and then solving the simultaneous algebraic
equations by a block iterative method.

2

Mathematical model

The two-dimensional transient heat conduction equation
for the tube is
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where L is the length of the tube and r; and r, are inner
and outer radius of the tube. The density, specific heat and
the thermal conductivity of the slab material are p, C and
k, respectively. The origin of the coordinate frame is at the
bottom point on the axis of the tube. To convert this
transient equation into quasi-steady state equation, the
following transformation is used:

f=r and z=2z — ut

where u is the constant quench front velocity and 7 and Zz
are radial and axial coordinates, respectively (Fig. 1). Thus
the transformed heat conduction equation in a coordinate
system moving with the quench front is
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(2)

In the conduction controlled rewetting analysis, it is be-
lieved that conduction of heat along the solid from dry
region to wet region is the dominant mechanism of heat
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Fig. 1. Physical and computational domain of infinite tube

|
|
o

removal ahead of the quench front, which results in a
lowering of the surface temperature immediately down-
stream of the quench front and causes the quench front to
progress further. Since only axial conduction is consid-
ered, the effect of coolant mass flux, coolant inlet sub-
cooling and its pressure gradient, etc. are not accounted
for explicitly, but only implicitly in terms of wet region
heat transfer coefficient, which is incorporated in the
boundary condition. In the present analysis, the heat
transfer coefficient h is assumed to be constant over the
entire wet region. The coolant temperature is taken to be
equal to its saturation temperature T;. Moreover, it is
assumed that the far upstream of the quench front (at

Z — —00), the wet region is quenched to a temperature T,
while the far pre-quenched zone (at zZ — +00) is still at the
initial wall temperature T,,. Equation (2) can be expressed
in the following dimensionless form:

li R% +@+Pe%—0
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The associated boundary conditions are:

%:0 at R=0, —c0<Z <
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The non-dimensional variables used above are:

r’ r’ Ty — T’
. hny pCur, 1
Bi=—> = R 5
1 k? k rz ()



Estimation of rewetting (quench front) temperature is
essential in predicting the rate at which the coolant
quenches the hot surface. The objective of the present
study is to compute the temperature field for the given
values of Biot number (Bi), Peclet number (Pe) and radius
ratio (J). The non-dimensional quench front temperature
is defined by

To— T
0p = 0= s

Tw — Ts
where T is the quench front temperature.
The infinite physical domain (—oo < Z < +00) is then

mapped to a finite computational domain (Fig. 1) by the
following infinite-finite transformation:

¢=R and = 0.5(1 + tanh o) (7)

where « is the stretching parameter. The rationale of such
a transformation is that the analytical boundary condi-
tions at infinity can be used in the finite-difference equa-
tions. The conduction-diffusion equation (3) is thus
transformed to
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The transformed boundary conditions are:
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Although Egs. (8) and (9) have been formulated for
quenching by bottom flooding, they are also applicable for
top flooding.
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Numerical solution

The five point representation of the elliptic partial differ-
ential equation (8) can be written in the general form

2
AJj0i5 = Aj;0ij1 + AL 011+ A70i51 + A7 0,

(10)

The coefficients A;; are evaluated by applying the power
law scheme (Patankar 1980) which makes use of inte-

grating Eq. (8) over non-uniform control volumes, hav-
ing a face area of A£Ay. This approach remains valid for
all nodal points except at the quench front. Since dis-

continuities in boundary conditions exist at the quench
front, the coefficients of the discretized equation at this
location have been obtained by an appropriate technique

(Carnahan et al. 1969). 0;; at the interface are expanded
into Taylor series ‘forwards’ for the dry region and
‘backwards’ for the wet region, dropping terms beyond
second order. These equations give (3°0/dn?), y for the
dry and wet regions which, when substituted in non-
conservative form of Eq. (8), yields (00/dn);; for the dry
and wet regions, respectively. Now the expressions for
(06/0n);; at the interface are put in the following com-
patibility conditions to determine A;; of the discretized
equation (10):

00\  /o0\" . -
<6_n> l_’j: <6_77> ’ and (Q)i,j = (H)iJ

where superscripts I and II denote dry and wet regions,
respectively. Expressions for the coefficients in Eq. (10)
are tabulated in the Appendix. To solve the system of al-
gebraic equations thus formed, an ADI iterative scheme is
used. A convergence criterion of 0.01% change in 0 at all
nodes has been selected to test the convergence of the
iterative scheme. All computations have been carried out
using a nonuniform grid arrangement with 21 x 161
nodes. Since steep temperature gradients are encountered
near the quench front, a grid structure has been adopted
with finer grids near the quench front and progressively
coarser grids away from it (Fig. 1). Sample calculations
were also carried out by doubling the grid size to ensure
that the results are independent of grid system.

Since the main objective of the present study is to es-
timate the quench front temperature as correctly as pos-
sible, it is essential that the temperature field satisfy the
heat balance. This is accomplished by integrating Eq. (8)
over the entire computational domain, that gives:

Pe(1 — &%)

2 :Bl/md”
0

The integral of Eq. (11) has been obtained using Simpson’s
1/3 rule. Since the integral becomes improper at n = 0, the
indeterminate form at this location has been avoided by
applying L’Hospital rule. The absolute difference between
the right and left sides of the above equation is first di-
vided by minimum of the two values and then multiplied
by 100 to get the percentage difference.

If the heat balance difference so obtained is assumed to be
the objective function, then the stretching parameter used in
the mapping function can be treated as an independent
variable. Thus, starting from an arbitrary base point (« > 0),
the variable can be moved towards an optimum based on
sequential minimization of the objective function. To re-
duce the number of function evaluations, an optimization
technique (Golden Section Search) is used that does not
require the derivative of the function. A tolerance limit of
0.01% change of the function value has been selected, below
which the search process is terminated.

(11)
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Results and discussion

The numerical computation of the temperature field has
been carried out with Bi, Pe and ¢ as input parameters. In



particular, the variation of quench front temperature with
respect to the above parameters are shown in the graphical
form. First, the distribution of surface temperatures on the
coolant side of the slab are plotted (Fig. 2) for different
Biot numbers, assuming Pe and 6 constant. The quench
front temperature is observed to decrease with increase in
Biot number. With fixed material properties and dimen-
sions, Biot number represents the heat transfer coefficient.
Thus a higher Biot number results in a higher value of the
heat transfer coefficient. This enhanced heat transfer co-
efficient may cause to decrease 6. The above trend is in
obvious accord with what one would expect on the basis of
physical interpretations. 0, decreases as Biot number in-
creases, reflecting the fact that a quench front progresses
more easily when the heat transfer coefficient to the
coolant is increased. Moreover, the temperature gradient
also increases with increase in Biot number in Fig. 2. This
reveals the fact that at higher values of heat transfer co-
efficients, the axial conduction across the quench front
may be significant.

The dependence of quench front temperature with
radius ratio is shown in Fig. 3, for fixed Biot and Peclet
numbers. 0, is found to increase with decrease in radius
ratio 0. With decrease in ¢, the thickness of the tube
increases and thereby its heat capacity also increases.
Thus 0, is expected to increase with decrease in ¢ be-
cause of the larger amount of initial heat content in the
thicker tube. In the limiting case of a solid rod, where o
is zero, quench front temperature assumes the maxi-
mum value.

The variation of quench front temperature with Peclet
number is shown in Fig. 4 with 6 = 0.9. In this case 0,
increases with increase in Pe. With fixed material prop-
erties and dimensions, Peclet number represents the
quench front velocity. For the prescribed radius ratio and
Biot numbers, the quench front temperature increases
with increase in quench front velocity. This may be due to
the fact that a higher relative velocity between the slab and
the coolant allows less time for sufficient heat transfer to
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Fig. 4. Quench front temperature variation with Biot and Peclet
number for the tube with radius ratio 6 = 0.9

take place, resulting in a higher value of 0;. The above
trend also reflects the fact that for the same rewetting rate,
an increasing cladding thermal diffusivity tends to reduce
0.

Finally, the variation of 0, with Peclet number is illus-
trated in Fig. 5 for a solid rod (6 = 0). As expected, the
quench front temperature increases with increase in Peclet
number and with decrease in Biot number. The present
solution has been compared with the analytical solutions
of Olek (1989) in Figs. 4 and 5. The agreement is fairly
substantial for lower values of Biot numbers, while the
accuracy deteriorates when Bi becomes large. This may be
due to the mismatch boundary conditions at the quench
front. Apparently, the strength of the discontinuity in-
creases with increase in Bi (Eq. (9)) and thus the solution
exhibits deviation from the exact results.
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Conclusion
A numerical solution for solving infinite domain problems
arising out of rewetting analysis has been suggested. The
value of the stretching parameter used in infinite-finite 1 nt1—n-
mapping function can be obtained by minimizing the heat I(n) = 20 [11__?
balance. The results computed with non-uniform grids
show good agreement with known closed form solutions. =S =& h=ng—m h=4-,
In general, quench front temperature is found to increase hy = n; — 1,
with increase in Peclet number and with decrease in Biot 7o
number. The present solution procedure, in principle, may Superscripts plus and minus in ¢ denote (i +1/2,j) &
be extended to other infinite domain rewetting problems (i — 1/2,j) locations.
involving heat flux in the core or precursory cooling in the Superscripts plus and minus in # denote (i,j + 1/2) &
dry region. (i,j — 1/2) locations.

|| || denotes larger between the two values.

k 2
5 ZA +B1< h3>

where

], n, = 2om(1 —n),

Appendix: Coefficients of finite difference equations
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