
Bitonic Sort in Shared SIMD Array Processor

Anukul Chandra Panda, Pankaj K Sa
Computer Science and Engineering Department

National Institute of Technology Rourkela
Rourkela, Odisha, India

{pandaa,pankajksa}@nitrkl.ac.in

Banshidhar Majhi
∗

College of Computer Science
King Khalid University
Abha, Saudi Arabia

bmajhi@nitrkl.ac.in

ABSTRACT
This paper presents a bitonic sort scheme in a shared mem-
ory mesh-connected SIMD array processor. In addition, it
uses the two types of comparators of sorting networks in
the mesh-connected parallel computer. This scheme uses
variable multiple pivots and non-pivots. Parity strategy has
been implemented to minimize the number of accesses in the
mesh-connected interconnection network by introducing the
concept of global and local memory. The proposed scheme
is sufficiently general which is independent of hardware and
interconnection network among them. From results it has
been observed that by reducing the internetwork communi-
cation a performance improvement is achieved.

Categories and Subject Descriptors
H.4 [C.1.4]: Processor ArchitecturesParallel Architectures;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures.

General Terms
Algorithms.

Keywords
SIMD Array Processor, Bitonic Sort, Parity Strategy.

1. INTRODUCTION
Use of sorted data is an essential ingredient in real life as

well as in many computer science applications. This is the
reason why the development of efficient sorting algorithms
have become a predominant field of computer science re-
search since long. These algorithms not only utilize the
computer hardware effectively, but also dynamically change
the execution time. Mostly parallel sorting algorithms are

∗Prof. Dr. Banshidhar Majhi is presently on leave from
National Institute of Technology Rourkela, Odisha, India.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCCS’11 February 12-14, 2011, Rourkela, Odisha, India
Copyright c© 2011 ACM 978-1-4503-0464-1/11/02 ...$10.00.

implemented in two models, namely special purpose archi-
tecture and general purpose architecture. Special purpose
architecture includes sorting network and sorting algorithms
like AKS algorithm, bitonic sorting algorithms are imple-
mented.

x

y

min(x,y)

max(x,y)

x

y

mi xnx(y,

m)anx(y,

(a) (b)

Figure 1: (a) Increasing Comparator (b) Decreasing
Comparator

Sorting networks use compare-exchange criteria with sort-
ing complexity Ω(n log n) [1] to sort a group of n elements
[2, 5]. Two types of comparators i.e. Increasing Comparator
and Decreasing Comparator shown in the Figure 1 are gener-
ally used to undergo the sorting using comparison operations
in parallel. In this paper, a bitonic sort algorithm on mesh–
connected SIMD array processor has been proposed. The
proposition uses the comparators of special purpose archi-
tecture [3] in general purpose parallel architecture. It uses a
shared memory SIMD parallel architecture with mesh con-
nected network topologies. The bitonic sort uses multiple
pivots in parallel alongwith a parity strategy [5] to alleviate
the spurious communication among processors. However in
the proposed scheme multiple pivots have been used. Multi-
ple pivots are used in the proposed bitonic sort on a realistic
interconnection network. The base of logarithm is taken as
2 in the paper.

The rest of the paper is organized as follows. Section
2 deals with the proposed parallel bitonic sort scheme in
shared memory mesh–connected SIMD parallel architecture.
Section 3 gives the time complexity of the proposed scheme.
Finally, Section 4 presents the concluding remarks.

2. PROPOSED BITONIC SORT SCHEME
An endeavor has been made to apply bitonic sort using

multiple pivots on shared memory SIMD array processor.
Bitonic sort algorithm has been implemented in SIMD ar-
ray processor with static interconnection network i.e. mesh
topology [4, 6]. The compare and exchange criterion of sort-
ing network is incorporated on the shared memory mesh-
connected SIMD parallel processor. For n elements, there
are

n
2

comparators to sort them in log n stages. Each com-
parator associates two processors with itself and performs

273



16 12

1510

0 7654321

7

6

5

4

3

2

1

0

shared global memory11 131714

11 13

1710

0 7654321

7

6

5

4

3

2

1

0

shared global memory16 121514

(a) (b) (c)

Figure 2: Stage 1 – (a) It shows four (2 × 1) mesh connected processors and a shared global memory, (b) Odd
parity elements are kept in the global memory and even parity elements are stored in the local memory, (c)
Step 1 : Shows the state of shared global memory and local memory of processors after the processor-global
memory communication as shown in Table 1.

11 16

1215

5 2074631

2

7

0

4

6

1

3

5

shared global memory10 131714

11 13

1716

0 7654321

7

5

6

4

3

1

2

0

shared global memory10 121514

10 13

1516

0 7654321

7

5

6

4

3

1

2

0

shared global memory11 121714

(a) (b) (c)

Figure 3: Stage 2 – (a) It shows two (2 × 2) mesh connected processors where odd parity elements are kept
in the global memory and even parity elements are stored in the local memory, (b) Step 1 : Shows the state
of shared global memory and local memory of processors after the processor-global memory communication
as shown in Table 2, (c) Step 2 : Shows the state of shared global memory and local memory of processors
after the processor-global memory communication as shown in Table 3.

the necessary changes. Each stage j requires j steps for a

total of log n(log n+1)
2

steps.

Here, n
2j numbers of (2 × 2j−1) (where j = 1, 2, 3, . . . )

mesh connected parallel processors are used to model each
stage. The algorithm to model the mesh connected parallel
architecture is done using Knuth diagram [5].

For better understanding of the problem an example has
been taken to demonstrate sorting of 8 elements. The el-
ements chosen are 16, 11, 14, 10, 17, 15, 12, 13 stored in
shared global memory. Since there are 8 elements, 3 (log 8)
stages will be there to perform the sorting of the elements.
The figures and tables shown demonstrate the steps required
to perform the sorting. Figure 2 through 4 show the inher-
ent steps involved in each stage while Table 1 through 6
depict the mode of communication involved among the pro-
cessors in the mesh connected SIMD array processor. Figure
2 shows the steps involved in Stage 1. In Figure 2(a), four (2
× 2) mesh connected processors and a shared global mem-
ory are taken. In Figure 2(b), elements present in odd parity
address are kept in the global memory and the elements in
even parity are stored in the local memory of the proces-
sor. Figure 2(c) is Step 1 of Stage 1. It shows the state
of global memory and local memory of processor after the
processor-global memory communication shown in Table 1.

The processors are then taken to form two (2 × 2) mesh
connected processors as shown in Figure 3(a). Figure 3
shows steps involved in Stage 2. Figure 3(b) and Figure
3(c) show the states of local memory of processors and global
memory after the processor-global memory communication

Table 1: Processor-Global Memory Communication
in 2(c)
Comparator Communication FLAG1 FLAG2

0 0 → 1 F F
1 2 → 3 T T
2 4 → 5 F T
3 6 → 7 T F

Table 2: Processor-Global Memory Communication
in 3(b)
Comparator Communication FLAG1 FLAG2

0 0 → 2 F F
1 1 → 3 F T
2 4 → 6 T T
3 5 → 7 T F

Table 3: Processor-Global Memory Communication
in 3(c)
Comparator Communication FLAG1 FLAG2

0 0 → 1 F F
1 2 → 3 F T
2 4 → 5 T T
3 6 → 7 T F

274



16

12

15

10

6 7504321

5

2

7

3

0

1

4

6

shared global memory11 131714

10

14

12

15

0 7654321

6

2

7

3

5

1

4

0

shared global memory11 161713

10

14

12

15

0 7654321

6

2

7

3

5

1

4

0

shared global memory11 161713

(a) (b) (c)

10

14

12

15

0 7654321

6

2

7

3

5

1

4

0

shared global memory11 161713 16 1215 10

6 7204531

2

3

7

5

0

1

4

6

shared global memory11 171413

10 1613 15

0 7654321

sorted array11 171412

sorted elements

(d) (e) (f)

Figure 4: Stage 3 – (a) It shows single (2 × 4) mesh connected processors where odd parity elements are kept
in the global memory and even parity elements are stored in the local memory, (b) Step 1 : Shows the state
of shared global memory and local memory of processors after the processor-global memory communication
as shown in Table 4, (c) Step 2 : Shows the state of shared global memory and local memory of processors
after the processor-global memory communication as shown in Table 5, (d) Step 3 : Shows the state of shared
global memory and local memory of processors after the processor-global memory communication as shown in
Table 6, (e) The elements from the global memory are brought back from the global memory to the respective
position into the local memory of the processors, (f) Shows the elements in sorted order.

Table 4: Processor-Global Memory Communication
in 4(b)
Comparator Communication FLAG1 FLAG2

0 0 → 4 F F
1 1 → 5 F T
2 2 → 6 F T
3 3 → 7 F F

Table 5: Processor-Global Memory Communication
in 4(c)
Comparator Communication FLAG1 FLAG2

0 0 → 2 F F
1 1 → 3 F T
2 4 → 6 F T
3 5 → 7 F F

Table 6: Processor-Global Memory Communication
in 4(d)
Comparator Communication FLAG1 FLAG2

0 0 → 1 F F
1 2 → 3 F T
2 4 → 5 F T
3 6 → 7 F F

shown in Table 2 and Table 3, respectively.
Figure 4 depicts Stage 3. In Figure 4(a), single (2 × 4)

has been taken. The steps involved to perform the opera-
tion from Figure 4(b) through Figure 4(d) is illustrated from
Table 4 through Table 6. Figure 4(e) illustrates that the el-
ements are brought back from local memory to global mem-
ory of the processor and Figure 4(f) gives the sorted array.
The working of FLAG1 and FLAG2 shown in the tables
is analyzed through the algorithm given below. The algo-
rithm uses the parity strategy. The main aim behind using
the parity strategy is to reduce the interprocessor commu-
nication among processors by half. Parity strategy finds the
addresses of even parity keys and odd parity keys.

n
2

multi-

ple pivots is chosen from n elements. Basically, the
n
2

pivots
are chosen from the even parity keys and loaded into local
memory. The other

n
2

elements are chosen as non-pivot el-
ements and stored in the global memory. In this strategy,
the pivot and the non-pivot are not fixed since the values
present in the even-parity addresses will serve as pivot and
vice-versa. So the element keep on changing their role dur-
ing the course of the log n stages. Hence, the

n
2

processors
storing non-pivot elements are active since these elements
communicate with the local memory to make the necessary
changes as depicted in Algorithm 1.

In the algorithm, Line 3 and Line 13 contain two flags
(FLAG1 and FLAG2), respectively. FLAG1 is taken to de-
cide the type of comparator described in Section ?? which
is to be incorporated within the mesh–connected SIMD ar-
ray processor. If FLAG1 is TRUE decreasing comparator is
used otherwise an increasing comparator is used. FLAG2

depicts which of the addresses among, local memory (lm)and

275



Algorithm 1 Bitonic sort with mesh-connected parallel
computers

Require: A[n] :Array of n elements present in global mem-
ory
lm : local memory
no : processor id from 0 to

n
2
-1

gm : global memory
XOR :

⊕

Ensure: A[n] :Array of sorted elements
{For all processors in parallel}

1: LOAD
n
2

elements into lm associated with each proces-
sor.

2: LOAD
n
2

elements into shared gm accessible by all pro-
cessor.

3: FLAG1 ← FALSE
4: for j ← 1 to log n do
5: if (�2 ∗ no/2j�)mod 2�=0 then
6: FLAG1 ← TRUE
7: end if
8: dim← 2j−1

9: while dim ≥ 1 do
10: Obtain the address of a non-pivot element: gm ←

lm
⊕

dim
11: READ only a non-pivot element from odd-parity

processor
12: if lm > gm then
13: FLAG2 ← TRUE
14: else
15: FLAG2 ← FALSE
16: end if
17: if FLAG1 == FLAG2 then
18: LOAD lowest element into lm
19: else
20: LOAD highest element into lm
21: end if
22: WRITE only pivot elements into global memory, A

23: dim ← dim
2

24: end while
25: end for
26: Store all the elements back to array A

global memory (gm) is greater. (FLAG2 = TRUE if ad-
dress where pivot is stored is greater). In Line 17, FLAG1

and FLAG2 are compared with each other. If FLAG1 and
FLAG2 are equal than the lowest element is loaded into the
local memory otherwise the highest element is stored . Line
11 demonstrates that only non-pivot element is read from
the odd-parity element address. Line 18, 20 and 22 cite that
only one element from two elements with each processor is
written back to the global memory.

3. TIME COMPLEXITY
In Line 2, a shared memory access is needed. Line 26

requires one more operation. Line 11 and 22 need two mem-
ory references. However, since it is within the nested loops,
2 memory references is multiplied by some term which is
shown below:

T (N) = 2 ∗ (1 + 2 + 3 + · · ·+ log n + 1 + 1)

= 2 ∗ (log n ∗ (log n + 1))/2 + 1 + 1

= log2 n + log n + 2

So the running time of proposed scheme is θ(log2 n).

4. CONCLUSION
In this paper a scheme has been proposed to apply bitonic

sort using parity strategy on mesh-connected SIMD array
processor. In the above scheme, sorting network is incorpo-
rated in shared memory mesh connected parallel computer
to undergo the sorting operation. This approach uses parity
strategy which helps in minimizing the shared memory ref-
erences within the mesh–connected SIMD computers since
either odd or even parity elements are allowed to take part
in the communication.

5. REFERENCES
[1] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n)

sorting network. In STOC ’83: Proceedings of the
fifteenth annual ACM symposium on Theory of
computing, pages 1–9, New York, NY, USA, 1983.
ACM.

[2] S. Akl. Parallel Sorting Algorithms. Academic Press,
1985.

[3] K. E. Batcher. Sorting networks and their applications.
In AFIPS ’68 (Spring): Proceedings of the April
30–May 2, 1968, spring joint computer conference,
pages 307–314, New York, NY, USA, 1968. ACM.

[4] K. Hwang. Advanced Computer Architecture:
Parallelism, Scalability,Programmability. McGraw-Hill,
1993.

[5] Lee, Jae-Dong, Batcher, and K. E. Minimizing
communication in the bitonic sort. IEEE Trans.
Parallel Distrib. Syst., 11(5):459–474, 2000.

[6] D. Nassimi and S. Sahni. Bitonic sort on a
mesh-connected parallel computer. IEEE Trans.
Comput., 28(1):2–7, 1979.

[7] P. Sanders and T. Hansch. Efficient massively parallel
quicksort. In G. Bilardi, A. Ferreira, R. Lüling, and
J. D. P. Rolim, editors, IRREGULAR, volume 1253 of
Lecture Notes in Computer Science, pages 13–24.
Springer, 1997.

276


