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Abstract— Distributed wireless sensor networks have been 
proposed as a solution to environment sensing, target tracking, 
data collection and other applications. Energy efficiency, high 
estimation accuracy, and fast convergence are important goals in 
distributed estimation algorithms for sensor network. This paper 
studies the problem of robust adaptive estimation in impulsive 
noise environment using robust cost function like Wilcoxon norm 
and saturation nonlinearity. The diffusion cooperative scheme 
conventionally used in sensor network in which each node have 
local computing ability and share them with their predefined 
neighbors, is not robust to impulsive type of noise. In this paper 
the robust norm is introduced in diffusion cooperative 
distributed network to estimate the desired parameters in 
presence of Gaussian contaminated impulsive noise. The 
simulation study shows that Wilcoxon norm and saturation 
linearity based diffusion LMS is robust to impulsive noise. 

Keywords- Adaptive networks, contaminated Gaussian 
distribution, distributed processing, incremental algorithm, 
diffusion LMS, Wilcoxon norm, error saturation nonlinearity 
algorithm.   

I.  INTRODUCTION  
       In wireless sensor networks(WSN) comprising the nodes 
are employed to collect data like local temperature, wind 
speed, humidity, or concentration of some materials etc over a 
geographic area and are envisioned to make a dramatic impact 
on a number of applications such as, precision agriculture, 
disaster relief management, radar, and acoustic source 
localization. In these applications, each node with its 
computational power, able to send data to a subset of the 
network nodes, and tries to estimate the parameter of interest 
[2, 13]. Therefore, there is a great deal of effort to devising 
algorithms that are able improve the estimate of the 
parameters of interest in every node with information 
exchange between nodes [19, 20]. More precisely, in 
mathematical terms, each node optimizes a cost function that 
depends on all information in the network. The main 
challenges in optimizing such functions are that (i) no node 
has direct access to all information, and (ii) the network 
topology can change over time (due to link failures, position 
changes, and/or reachability problems). (iii) the presence of 
impulsive noise or outliers i.e. when data is contaminated with 
non-Gaussian noise. The conventional estimation algorithms, 
which is based on squared error as the cost function, is not 
robust to outliers in the training signal. Hence presence of 
such impulsive noise in the training signal severely detoriates 
the estimation performance. Thus there is need to develop 

robust estimation algorithm in a distributed scenario to 
alleviate the effect of outliers. 
      LMS algorithm [6, 21] has been reported in the literature 
using Wilcoxon norm which is not distributed in nature. This 
algorithm is not directly useful in applications which is 
inherently distributed in nature. In this paper we focus on 
developing a novel distributed estimation algorithm using 
Wilcoxon norm and compared the results with other robust 
algorithm like error saturation nonlinearity which are robust to 
impulsive noise or outliers. 
        It is known that when data is contaminated with non-
Gaussian noise, the conventional adaptive filters minimizing 
least square or mean square criterion yield poor performance. 
This leads to a new domain of research in modern 
communication systems, where the performance is limited by 
interference of impulsive nature. In many physical 
environment the additive noise is modeled as impulsive and is 
characterized by long-tailed non-Gaussian distribution. The 
performance of such system is evaluated under the assumption 
that the Gaussian noise is severally degraded by the non-
Gaussian or Gaussian mixture [23] noise due to deviation from 
normality in the tails [12, 18]. Nonlinear techniques are 
employed to reduce the effect of impulsive interference on the 
systems. The effects of saturation type of non-linearity on the 
least-mean square adaptation for Gaussian inputs and 
Gaussian noise have been studied [7, 9]. Recent research focus 
is to develop adaptive algorithm that are robust to impulsive 
noise or outliers present in the training data. A number of 
algorithms have been proposed [1, 10, 12, 14] in the literature 
to reduce the effects of impulsive noise. 
      The LMS algorithm is a popular adaptive algorithm 
because of its simplicity [16, 24]. Recently several distributed 
type of algorithms based on LMS has been suggested and 
analyzed in the literature. These are not robust against outliers 
in the training signal as the squared error norm is used as the 
cost function in deriving the algorithm. On the other hand 
centralized robust class of least-mean square algorithm with 
error saturation nonlinearity is of special importance. The 
error nonlinearity analysis [3, 4] using weighted-energy 
conservation method for Gaussian data has been dealt in 
literature. However the theory in [8] provides the basic for 
extending to Gaussian mixture case. In this paper we exploit 
both the ideas to develop a new generalized distributed 
algorithm which is robust to impulsive type of noise. The 
steady-state analysis of saturation nonlinearity incremental 
LMS (SNILMS) in presence of contaminated Gaussian 



impulsive noise is carried out and shown by simulation its 
robustness over the conventional incremental LMS algorithm 
(ILMS) is demonstrated.  

II. ROBUST DIFFUSION LMS ALGORITHM 
      Recently the concept of distributed adaptive incremental 
algorithms has been developed in the literature [5, 11, 15] to 
increase the energy efficiency of sensor network. One of such 
schemes is incremental cooperative technique which provides 
a truly global solution in estimating unknown parameters in 
WSN. But it is a fact that the gradient based incremental 
algorithm is not robust to impulsive type of noise present in 
the training signal. To make the algorithm robust for 
impulsive noise, here authors have introduced a new class of 
distributed algorithm based on error saturation nonlinearity 
LMS. 
       Let define a sensor network has N number of nodes in 
which each node has access only to its immediate neighbor 
node. We assume that the sensors make noisy vector 
measurements of surrounding environment. Each node k has 
access to }),({ ,ikk uid  data out of a total 

Nksetdataud kk 1,2,3,...=},,{ . The symbol )(idk  

represents a scalar measurement and iku ,  as a M×1  
regression row vector at time i and is given by:  
       1)](1),(),([=, +−− Miuiuiu kkkik Ku  

Let the local estimate of optimum weight ow  is )(i
kΨ  at 

time i. It is also assume that node k has access to only )(
1

i
k−Ψ , 

which is an estimate of ow  at its immediate neighbor node k-1 
in the defined topology. Let the current global estimate of ow  
is 1−iw  which is the initial condition at i defined as 

1
)(

0 = −Ψ i
i w  and at the end of one cycle the local estimate 

vector at node N is assigned as iw  i.e. i
i

N w=)(Ψ . 

A. Adaptive Algorithm with Error saturation Nonlinearity 

       The estimate of an 1×M  unknown vector ow  by using 
row regressor iu , of length M and output samples )(id  is 
given as  

)(=)( ivid i +owu  (1) 

 Where )(iv  is represents the Gaussian contaminated 
impulsive noise instead of white Gaussian. The weight update 
equation of well known LMS algorithm is given by [16, 22, 
24]  

T
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The update equation using error saturation nonlinear LMS 
which is robust to impulsive noise [8] is given as  

0)]([= 1 ≥+− iiefT
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 where iw  is the estimate of w  at time i and μ  is the step 
size. 
    The error term at ith time instant is represented as  
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B. Wilcoxon Norm 
     To define Wilcoxon norm of a vector[17], we need a score 
function R→[0,1]:ϕ  which is non decreasing such that  
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The score associated with the score function ϕ  is defined by  
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where l  is a fixed positive integer. 
It can be shown that the following function is a 

pseudonorm on :lR   

   ( ) )(
1=1=

)(=)(:= i

l

i
ii

l

i
W viavvRav ∑∑||  

 lT
lvvv R∈],,,[:= 21 K  

 where )( ivR  denotes the rank of iv  among 
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Then we call Wv ||  defined in (5) is the Wilcoxon Norm of 
the vector v .  

C.  Model for Impulsive Noise 
      The performance analysis of adaptive filters that are 
available in literature is for the case of white Gaussian noise. 
But in practical situation the impulsive noise is encountered. 
The impulsive noise is modeled as two components of the 
Gaussian mixture[12, 18, 23] and may be given as  

)()()(=)()(=)( ivibiviviviv wgimg ++  (6) 

 where )(ivg  and )(ivw  are independent zero mean Gaussian 

noise with variances 2
gσ  and 2

wσ , respectively; )(ib  is a 
switch sequence of ones and zeros and is modeled as an iid 
Bernoulli random process with occurrence probability 

rr pibP =1)=)((  and rr pibP −1=0)=)(( . The 

variance of )(ivw  is chosen to be very large than that of 

)(ivg  so that when 1=)(ib , a large impulse is experienced 

in )(iv . The corresponding pdf of )(iv  in (3) is given by  
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 where 222 = wgT σσσ +  and 2222 ==)]([ wrgv pivE σσσ + . 

It is noted that when 0=rp  or 1, )(iv  is a zero-mean 
Gaussian variate.  

D.  Distributed Robust Diffusion LMS Algorithm 
     The distributed algorithms defined till now are simple and 
it provides good performance in WGN. But in reality, the 
sensor networks are working in environments where impulsive 
noise is common. This type of noise not occur frequently, but 
when it occurs the LMS based algorithms fail to perform 
satisfactorily. So we modify the distributed incremental LMS 
algorithm by adding non-linearity in the error term which is 
defined in (3).  
      This algorithm is similar to Diffusion LMS algorithm 
in[19], but here the weight update equation after local 
diffusion is modified accordingly the error modified algorithm 
given in [7]. The algorithm is given as:  
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III.  SIMULATION RESULTS  
The performance of the error saturation nonlinearity 

incremental LMS is evaluated through simulation study and 
the results are compared with those obtained by theoretical 
investigation. Further to access the performance of the 
proposed method both theoretical and simulation results of 
incremental LMS are also plotted. All simulations are carried 
out using regressor input with shift structure. The desired data 
are generated according to the model given in (1), and the 
unknown vector ow  is set to MT /,1][1,1,K . 

In the same example as in [20] is simulated for 
facilitating comparison. The network consists of twenty nodes 
with each regressor size of 10)(1×  collecting data through a 
correlated process given by  

 −∞⋅+−⋅ >),(1)(=)( iinbiuaiu kkkkk

 (9) 
 Here, [0,1)∈ka  is the correlation index and )(ink  is a 
spatially independent white Gaussian process with unit 

variance and )(1= 22
, kkuk ab −⋅σ . The regressor power 

profile (0,1]}{ 2
, ∈kuσ . The resulting regressors have 

Toeplitz covariance with co-relation sequence 
1,0,1,2,=,)(=)( ||2

, −⋅ Miair i
kkuk Kσ . These 

parameters are chosen randomly, have taken same as in [20] 
for comparison purpose and are depicted in Figs.1 and 2. The 
background Gaussian noise with variance kg ,σ  are also 
generated randomly.  
 

 
Fig.1 Network topology 
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Figure  2: Network statistics (a) Regressor power profile. (b) Correlation 
index per node 
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Figure  3: Performance of the algorithm for 
2222 10000=,001.0=,0.03=01,.0=0.1= gwgsrp σσσμσ

 and the step size in Wilcoxon norm is 0.002=η  (a) global 
mean square deviation (MSD) (b) global excess mean square 
error (EMSE)  
 
        
      To generate the performance curves, ten independent 
experiments are performed and the results are averaged. The 
steady-state curves are generated by running the networks for 
3000 iterations. The quantities such as the MSD, EMSE and 
MSE are obtained by averaging the last 300 samples of the 
corresponding learning curves. 
        The robustness of the algorithm in 10%  impulsive noise 
is tested. The variance of impulsive noise is defined as 410  
times the back ground Gaussian noise variance defined for 
each node in Fig. 3. Figure 3 clearly show the robustness of 
algorithm in impulsive noise over incremental LMS. The 
steady-state values attained by both the MSD and EMSE are 
around -25dB for MSD and -30dB for EMSE respectively 

where as the incremental LMS attains poor performances such 
as 10dB and 5dB for MSD and EMSE respectively. 
     The main objective of all the adaptive algorithms are to 
estimate optimum weights. If the noise is stationary, then the 
mean-square error is close to the background noise. But when 
the noise is non stationary, then the MSE does not converge. 
In this situation the estimated weights obtained by using LMS 
type algorithm diverge from the desired values. It is because 
the error is used directly in weight update equation of the 
adaptive algorithm. Therefore the MSD and EMSE do not 
converge and hence the steady-state values are high in case of 
distributed incremental LMS. 
      But in case of the saturation error nonlinearity distributed 
incremental algorithm, the error is not used directly in the 
weight update equation. In this case the error is fed through 
the Gaussian nonlinearity function, where the error is mapped 

within limit of ]
2

,
2

[ ss σπσπ−  which is again limited by 

the proper of sσ . The error may be high enough due to 
impulsive nature, but that mapped to small value with in the 
defined limit. So that the estimated weights are approaching 
towards the desired weight due to the presence of error 
nonlinearity in update equation. This reflects in the steady-
state performance of the filter. The MSD and EMSE attain 
very low values indicating that ∞Ψk  is a good estimate for 

ow . But the error remains unchanged, so that the steady-state 
MSE does not converge in both the cases. 
      In case of Wicoxon norm diffusion algorithm, the error 
vector is weighted. The maximum error is then multipied with 
less weight to minimize its affect on weight upadate process. 
The computation in this method is more compare to saturation 
diffusion algorithm because of every time we have to arrange 
the error in ascending ordet to find the Wilcoxon norm. 
 

IV. CONCLUSION 
     This paper presents the steady-state performance of robust 
distributed diffusion algorithms under the contaminated 
Gaussian impulsive noise which exhibits in simulation studies 
its robustness over the conventional diffusion LMS. One of 
the key results of this work is to show the robust estimation in 
impulsive noise environment over wireless sensor network.  
The proposed algorithms using diffusion distributed scheme 
need same computation and communication resources as 
required in case of diffusion LMS. 
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