

On-line Fault Diagnosis for Distributed
Communication Networks

1Arunanshu Mahapatro, 2Pabitra Mohan Khilar

 Department of Comp. Sc. & Engg, NIT, Rourkela, India, Pin-769008
Email: 1arun227@gmail.com, 2khilarpm@yahoo.com,

 ABSTRACT

This paper proposes an on-line two phase (TPD) fault

diagnosis algorithm for distributed communication networks.

Intermediate nodes communicate the messages between

different source destination pairs. The algorithm addresses a

realistic fault model considering crash and value faults in the

nodes. The algorithm is shown to produce a time complexity

of O(1) and message complexity of O(n.e) respectively. The

results such as diagnostic latency, message complexity and

energy consumption shows that the proposed diagnosis

algorithm is feasible for design of different fault tolerant

wired and wireless communication networks.

Key Words: On-line diagnosis, two phase diagnosis, value

faults, dynamic fault environment

I. INTRODUCTION

The distributed communication networks such as mobile
ad hoc network, sensor network etc, are becoming popular
due to their extensive use in social, commercial and
scientific applications. As the computing power and the
physical complexity of these systems increase, they
become more susceptible to component failures.
Incorporating correct and timely fault diagnosis capability
to the system is essential to improve the system reliability
and availability. An important problem known as
distributed self-diagnosis provides software based
diagnosis solution for achieving fault tolerance without
using redundancy. In distributed self-diagnosis, every node
in the distributed communication networks needs to record
the status of all other nodes.

Motivated by the need of an on-line distributed diagnosis,
we develop and evaluate a two-phase fault diagnosis and
recovery strategies in a dynamic fault environment i.e., the
nodes may change their status during execution of the
diagnosis procedure. The diagnostic latency and message
complexity is used as the performance measure in order to
evaluate the proposed fault diagnosis algorithm. The paper
outline as follows: Section 2 presents the related work on
distributed diagnosis. The system and fault model is
specified in section 3. The TPD along with its formal
analysis has been described in section 4 followed by the
simulation results in section 5. Finally the section 6
concludes the paper.

II. RELATED WORKS

An excellent survey on fault diagnosis has appeared by
authors Barborak, Malek and Dahbura in paper [1]. Most
classical approaches assume permanent or crash fault
model and regular network topologies [2]. Previous work
in this field has almost exclusively dealt with static fault
situations, i.e., status of the nodes (faulty or fault free) does
not change during execution of the diagnosis procedure.
These assumptions are neither realistic nor suitable for on-
line environment where nodes may fail and recover during
execution of the diagnosis procedure. Recently, Subbiah
and Blough [4] propose one instance of distributed
diagnosis in dynamic fault situation both for completely
and not completely connected systems but assumes
traditional crash fault model. The algorithms considering a
combination of crash and value failures for fully connected
network has been proposed by authors C.J.Walter et. el., in
[3]. Very small number handles a combination of crash and
value failures for arbitrary network topologies. These
algorithms rely on a particular testing strategy such as test
based or heartbeat based. Since tests are difficult to obtain
in practice, various comparison-based approaches have
been proposed. Tasks are duplicated on multiple processors
and their results are compared to identify faulty ones [5].
The comparison-based approach is believed to be most
practical diagnosis strategy for system diagnosis. The
heartbeat-based schemes are of low cost usually few bytes
and needs a single message transmission to achieve
diagnosis between a pair of nodes. Here, in this paper an
algorithm Two Phase Diagnosis (TPD) has been proposed
which considers a combined heartbeat and comparison
testing strategy under more realistic fault model for
arbitrary network topologies. The author has also proposed
a number of fault diagnosis algorithms and energy efficient
fault diagnosis protocols for distributed wireless and wired
networks suitable for general purpose and real-time
wireless and wired distributed communication networks [6-
10].

mailto:arun227@gmail.com
mailto:khilarpm@yahoo.com

III. SYSTEM AND FAULT MODEL

A System Model

The communication network is assumed to be error-free,
and deliver messages reliably. We consider a round-based
communication model, which implies that periodically, i.e.

, at the period boundaries, messages are sent by system
nodes. A synchronous, message-passing framework is
assumed where the communication delay is bounded. All
processors execute the same workload (For example
temperature sensing from the environment) and determine
the output value Vi. This value is communicated to all other
nodes. An arbitrary network with connectivity k has been
assumed where a node issues a single heartbeat message,
which is broadcast to all nodes via intermediate nodes.
Every node is assigned with a node-id, and can detect the
absence or time deviance for an expected message. Nodes
may be faulty and links are fault-free The transmission time
tx, is the time between a node initiating a communication
and the last bit of the message being injected into the
network. The minimum and maximum propagation delays
for delivering all of the message bits between any two
neighboring nodes are denoted by tpro-min and tpro-max,
respectively.

B Fault Model

We consider crash and value faults in nodes. Links are
assumed to be fault free. The network delivers messages
reliably. A faulty node performs its computation like a non-
faulty node but it may fail to send its value (crash fault) or it
may send an erroneous value to another node (value fault).
For example, a faulty mobile in adhoc network may be
faulty due to it is switched off, out of range or an adversary
node has corrupted the header of the message. The
combined heartbeat and comparison based testing
mechanism is followed to detect the faults in nodes. A state
machine with two states, failed (1) and working (0) models
the status of a node. The node subjected to crash fault
simply ceases functioning without sending any message and
the failed nodes, which may send valid but incorrect result
to the receiver, indicate the value fault. The state holding

time is the minimum time that a node remains in one state
before transitioning to the other state.

IV. THE ALGORITHM

A Terminology

We consider n as the number of nodes in the system and
messy representing a message sent by node Y. We consider
two fault categories: 1) The set of missing messages, are
those messages which X believes Y failed to issue during
round m, and 2) The set of improper logical messages, are
those messages which are correctly delivered but disagree
with VX, the result of X‟s own voting process on inputs
received. The syndrome Syndrome(Y),  X, Y represents
the union of test outcomes due to improper logical message
and missing message. Syndromem(Y) is represented in

vector form for each value of X, with vector entries
corresponding to all Y values from which X receives
messages. The vector entry corresponding to any node Y is
a binary input: 0 corresponds to a fault-free input received
from Y as perceived by X, and 1 represents a fault being
perceived by X. Each node maintains its perception of the
system state using a system level error report in the form of
a vector, FX

m(Y) (as received by X from node Y over round
m), consisting of an ordered quadruple  X,Y,m,
SyndromeX

m(Y) . The function Fm
tot(Y) = |UX  n, X  Y FX

m(Y)| is used to count the number of accusations on a
processor Y by all other processors during period m. Thus
Fm

tot(Y) is an integer where 0  Fm
tot(Y)  (n-1).

B Algorithm Assumptions

For arbitrarily connected network, a restricted case is
considered where fewer than k nodes are in the failed state
at any given instant of time so that the network remains
connected. Each node periodically executes the diagnostic
workload and initiates a round of message transmissions.
Assume an arbitrary node X initiates a round of heartbeat
transmissions at real time t and remains in the working state
indefinitely afterward. X will initiate another round of
heartbeat transmissions no later than real time t+(1+)π,
where π is the heartbeat period and  is the maximum drift
rate of the clock with  << 1. The message can be quite
sophisticated and can encapsulate within it information
about the health of the node being monitored. A message
consists of the following fields (1) Node_id: The ID of the
node that initiated the message, (2) Seq_no: The sequence
number of the message, (3) Val: The value associated with
message, (4) Delay: Heartbeat delay stored in the buffer of a
node. The Seq_no field serves to distinguish successive
messages from the same node. The sequence number is
incremented by 1 during every period starting from
sequence number 0. When the maximum sequence number
(MAX_SEQ_NUM) that can be stored in this field is
exceeded, the sequence number is wrapped around to 0.
Thus it is used as a logical sequence number. The Node_id
and Seq-no fields together identify the message. Val field is
used to check for value fault in the received message.
Sequence numbering has been employed to differentiate the
old diagnostic messages from the most up-to-date versions
of them. Delay field stores the minimum time a heartbeat is
stored at a particular node. Each node maintains an array of
n entries, where n is the total number of nodes in the
network. The ith entry in array stored in node X contains: (1)
Status: Node X‟s view of node i. (state 0 or 1), (2)
Last_seq_no: The Seq_no field of the latest heartbeat
received from node i by node X.

372 ♦ International Conference on Electronic Systems (ICES-2011)___

C The Proposed Algorithm (TPD)

Out of the two phases of the algorithm, during the first
phase each node periodically execute the diagnostic work
load and initiates the results by a round of message
transmissions to all other nodes. A node detects a crash or
missing message fault without receiving a heartbeat for
duration Ttime_out. If the message delivery and it‟s arrival at
a receiving node is valid but incorrect (i.e., value does not
match with it‟s own computed value), the message is
recorded as improper logical message and the node is
value faulty. This phase of diagnosis we call local
diagnosis phase. In this phase a node identifies other
node‟s validity by comparing it‟s own message with that of
received message. The comparison need not seek for an
exact value in the message rather can choose to consider
range or deviance check. If the received message is well
within the range of it‟s own value, it accepts as a correct
message otherwise records as incorrect message. For
example, in a mobile adhoc network, a faulty mobile node
may not respond due to either physical damage or out of
range. An adversary node may also send an erroneous
message in its header, which may not be detectable during
this phase. We show that, these faults are detected by the
second phase of diagnosis. In the second phase these local
results available at each node are further exchanged with
other nodes and a counter maintained at every node is
incremented by one for every positive diagnosis. If the
counter value at a particular node for another node is
greater than half of the nodes, it means that more number
of nodes detected that node as faulty and all other nodes
that recorded this event as fault free is accused as faulty. If
the accusation against a node is recorded as faulty in the
previous round, this node is considered as faulty in the
current round. This phase of diagnosis is called global
diagnosis phase and mainly used for accurate diagnosis of
the system. Both the phases of two-phase diagnosis
procedure are executed in a pipelined manner to improve
diagnostic latency.

D Basic Analysis of Algorithm

The formal analysis of algorithm involves satisfying the
two important properties as follows: (P1): Correctness:
every node diagnosed to be faulty by a non-faulty node is
indeed faulty (P2): Completeness: Every faulty node is
identified. First, we consider correctness, which states that
if a good processor accuses some other processor, the
accused processor is indeed faulty.
Lemma 1. If “X” is good, then FX

m(Y)  0, implies that
“Y” is faulty.
Theorem 1. (Correctness). If a good “X” declares “Y”
faulty, „Y” is indeed faulty.
Theorem 2. (Completeness). If “Y” is faulty, then all good
nodes diagnose “Y” as faulty.

The proofs for the lemma 1, theorem 1 and 2 is given in
Appendix. The upper bound for recovery event and failure
detection event is computed as follows. First we compute
the upper bound between a node initiating a heartbeat and a
heartbeat with the same or a higher sequence number being
received by all other nodes is Dmaxn = d(k-1)(n-1)tx +
(n+k-2)(tx + tprop-max + c) – (k-1), if the failed state holding
time, SHTf is at least Dmaxn where, d is the maximum
number of neighbors of any node, k is connectivity of the
network, n is number of nodes,  = is a small positive
constant and is the smallest time such that a heartbeat send
in tx -  time is an invalid heartbeat and c is the comparison
time between received value and the node‟s own computed
value. Dmaxn is the theoretical latency in detecting a
recovery event and was derived by taking a particular
sequence of events to represent an worst case scenario. A
crash or missing message fault is detected by time out.
Upon receipt of a new heartbeat, the period of time a node
that is continuously in the working state waits for the next
new heartbeat before detecting a fault event, called the
timeout period Ttimeout is (1+2ρ) + (1+ρ)(Dmaxn –
heartbeat.delay) where heartbeat.delay is the value in the
delay field of the last heartbeat received. Due to the
existence of multiple paths between nodes, it is possible
that a node times out thereby detecting a fault event and
then receives a stale heartbeat. Arrival of this stale
heartbeat does not indicate a recovery event. Hence, when
nodes time out, they discard any heartbeats they may
receive from the node just diagnosed to be faulty for a
predetermined amount of time Texist. Texist refers to the
maximum possible time the heartbeat can exist in the
network and is = (1+2ρ) + (1+ρ) Dmaxn + n(tpro-max – tpro-min
+ c). A heartbeat is said to exist in the network if either the
heartbeat is propagating in the network or the heartbeat is
stored in some node‟s buffer. The value of Texist is the
theoretical failure detection latency. A node needs to stay
for large enough time in the failed state such that all other
fault free nodes detect it‟s state. So after Tout a node keeps
on rejecting the heartbeat for a maximum amount of time
called heartbeat rejection time Treject = 2ρm + 2ρDmaxn +
n(1+ρ)(tpro-max – tpro-min + c). The heartbeat rejection time is
the period of time a node X discards heartbeats from a
node Y after diagnosing node Y to be faulty. Since arrival
of a stale heartbeat is not a recovery event, for a genuine
recovery event to be detected, the failed state holding time
should be made sufficiently large to guarantee that no new
heartbeat message arrives during the rejection time. The
failed state holding time, denoted by SHTf, is the minimum
time a node remains in the failed state before transitioning
to the working state. The failed state holding time (SHTf)
is Texist + (1+ρ) Treject – tx. The derived expressions are
closely related with the expressions that appears in paper
[4]. It can be observed that Texist is the theoretical latency in
detecting a failure event.

__On-line Fault Diagnosis for Distributed Communication Networks ♦ 373

V. SIMULATION RESULTS

Algorithm was simulated on randomly generated networks.
tx, tpro-min, tpro-max, c, Poisson mean, ρ ,k and π were kept
fixed at 0.002, 0.008, 0.08, 0.05, 1, 0.001,3 and 40 seconds

, respectively, for all simulations. Simulations were
performed on networks of sizes 8, 16, 32, 64, 128, and 256
using discrete event simulation techniques. The dynamic
nature of the system was modeled using a Poisson process.
When an event occurs on a node, the next event time is
computed by adding the state holding time and the time as
given by the poison process. In all simulations, the
minimum state holding times for both failed and working
states were set to the failed state holding time.

Figure 1. Diagnostic Latency versus n.

 A

Diagnostic Latency and Message Complexity

Fig. 1 shows the theoretical diagnostic latency i.e., in
detecting either a failure or recovery event which ever is
higher. The diagnostic latency is variable due to the
difference in the actual propagation time of the last
heartbeat and the delay tracked by the intermediate nodes.
Hence, the more links that are traversed by the last heartbeat
that is sent by a node before it could fail, the more varied
the latency will be. Fig 2 shows the number of messages
exchanged per heartbeat period per link in an n-node e-link
network. The number of messages increases linearly with n
which shows the algorithm is linearly scalable. The message
complexity is O(n.e).

VI. CONCLUSION

The paper proposed an on-line two-phase diagnosis
algorithm considering a realistic fault model based on
monitoring the system message traffic generated due to
execution of normal workload. The algorithm propagates
status information as quickly and through as many
redundant paths as possible to allow it to effectively handle
dynamic situations. All nodes can change state at the same
time or a cascade of status changes can occur, while
maintaining a notion of correctness at all times. The
proposed algorithm TPD has been able to handle these
behaviors effectively in arbitrary-connected networks with
diagnostic latency of O(1) and message complexity of (n.e).
Our future works include the validation of results using
network life time as the main parameter which will address
the resource constraint in wireless adhoc network.

REFERENCES

[1] M. Barborak, Malek, and Dahbura, “ The Consensus Problem in Fault-
 Tolerant Computing”, ACM Computing Surveys, vol. 25, pp. 171-220,
 June 1993.
[2] P.M.Khilar, “ Algorithms For Distributed System Level Diagnosis “,
 M.Tech Thesis, 1999, NIT, Rourkela, India
[3] C.J.Walter et al., “ Formally Verified On-Line Diagnosis, IEEE Trans.
 Software Engg., vol. 23, no. 11, pp. 684-721, Nov. 1997.
[4] A. Subbiah et al., “Distributed Diagnosis in Dynamic Fault
 Environments “, IEEE Trans on Parallel and Distributed System, Vol
 15, No. 5, May 2004.
[5] D.M. Blough et al, “ The Broadcast Comparison Model for On-Line
 Fault Diagnosis in Multicomputer Systems: Theory and
 Implementation ”, IEEE Transactions on Computers, Vol. 48, 1999.
[6] P.M.Khilar “Algorithms for Fault Diagnosis in Wireless Adhoc

Networks and Distributed Embedded Systems”, 2009, Ph.D Thesis,
IIT, Kharagpur, India.

[7] P.M.Khilar and S.Mahapatra, “A Novel Hierarchical Clustering
Approach For Diagnosing Large-Scale Wireless Adhoc Systems”
International Journal of Computer and Applications, Vol. 31, No.4,
2009, pp. 260-267.

[8] M. N. Sahoo and P. M. Khilar, “Survivability of IEEE 802.11 Wireless
LAN against Access Point Failure”, International Journal of
Applications in Engineering, Technology and Sciences, Vol 1, No. 2,
2009, pp. 424-428.

[9] M. Panda and P.M.Khilar, “Energy Efficient Search in Dense Wireless
Sensor Networks”, In proc. of International Conference on
Computational Intelligence and Communication Networks (CICN –
2010), Bhopal, India, November 12-15, 2010.

[10] M. Panda, P.M.Khilar, T.Panigrahi and G.Panda, “Learning with
Distributed Data in Wireless Sensor Networks”, In the proc. of First
International Conference on Parallel, Distributed and Grid Computing,
(PDGC-2010), Jaypee University of Information Technology,
Waknaghat, Solan (H.P), India, October. 28-30, 2010, pp.241-245.

APPENDIX

Lemma 1. If “X” is good, then FX

m(Y)  0, implies that “Y”
is faulty.

0
20
40
60
80

100
120

0 100 200 300

No. of Nodes

D
ia

gn
os

tic
 L

at
en

cy Theoretical
Latency
Maximum
Latency
Average
Latency

Fig. 2 Number of messages per link versus n for different
values of connectivity

374 ♦ International Conference on Electronic Systems (ICES-2011)___

Proof: We prove this by complete induction on the number
of rounds of algorithm we use. If FX

m(Y)  0, then some
message sent from Y to X was bad. If the message was
simply missing or was value faulty, then Y is in fact bad.
The two remaining reasons that X would record an
accusation of Y is if Y failed to accuse some bad processor,
or if Y accused some good processor in an earlier frame. By
induction we can assume that the previous majority votes on
the fault status of other processors are correct. Since all
faults are assumed to be symmetrically dispersed, if Y failed
to accuse a bad processor Z, then Y is bad, as all processors
including Y must have received the same bad message from
Z. If Y accused a good processor Z, then Y must be bad
since no majority of good processors received a bad
message from Z.

Theorem 1. (Correctness). If a good “X” declares “Y”
faulty, “Y” is indeed faulty.

Proof. We prove this by complete induction on the number
of rounds used by algorithm. The only situation in the
algorithm that a good node could declare another node
faulty is when Ftot

m(Y)  n/2. This can arise only if over
half of all nodes send an accusation to X. Since we assume
that over half of all nodes are nonfaulty, some good node Z
must have contributed by sending an accusation of Y to X.
By Lemma 1, we thus know that Y is indeed faulty.

Theorem 2. (Completeness). If “Y” is faulty, then all good
nodes diagnose “Y” as faulty.

Proof. We prove this by complete induction on the number
of rounds used in algorithm. For round m, we assume that
for smaller number of rounds this property holds. If Y is
faulty in earlier rounds then by induction we can assume
that X declared Y faulty earlier, and thus since declarations
are monotone, X declares Y faulty. If Y is faulty in this
round, it must be either benign faulty, in which case all
messages are benign, or symmetric-value faulty. If the
symmetric-value faulty nodes produces a good value then it
is not a fault. Thus even symmetric-value faulty nodes must
produce bad values. In either case all good processors will
accuse Y of being faulty, sending FX

m(Y) to all other
processors. Since we assume there are a majority of good
processors, there will be a majority of votes to condemn Y,
and all good processors will declare Y faulty.

__On-line Fault Diagnosis for Distributed Communication Networks ♦ 375

