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 ABSTRACT 

 
This paper proposes an on-line two phase (TPD) fault 

diagnosis algorithm for distributed communication networks. 

Intermediate nodes communicate the messages between 

different source destination pairs. The algorithm addresses a 

realistic fault model considering crash and value faults in the 

nodes. The algorithm is shown to produce a time complexity 

of O(1) and message complexity of O(n.e) respectively. The 

results such as diagnostic latency, message complexity and 

energy consumption shows that the proposed diagnosis 

algorithm is feasible for design of different fault tolerant 

wired and wireless communication networks. 
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I. INTRODUCTION 
 
The distributed communication networks such as mobile 
ad hoc network, sensor network etc, are becoming popular 
due to their extensive use in social, commercial and 
scientific applications. As the computing power and the 
physical complexity of these systems increase, they 
become more susceptible to component failures. 
Incorporating correct and timely fault diagnosis capability 
to the system is essential to improve the system reliability 
and availability. An important problem known as 
distributed self-diagnosis provides software based 
diagnosis solution for achieving fault tolerance without 
using redundancy. In distributed self-diagnosis, every node 
in the distributed communication networks needs to record 
the status of all other nodes.   
 
Motivated by the need of an on-line distributed diagnosis, 
we develop and evaluate a two-phase fault diagnosis and 
recovery strategies in a dynamic fault environment i.e., the 
nodes may change their status during execution of the 
diagnosis procedure. The diagnostic latency and message 
complexity is used as the performance measure in order to 
evaluate the proposed fault diagnosis algorithm. The paper 
outline as follows: Section 2 presents the related work on 
distributed diagnosis. The system and fault model is 
specified in section 3. The TPD along with its formal 
analysis has been described in section 4 followed by the 
simulation results in section 5. Finally the section 6 
concludes the paper. 

 

II. RELATED WORKS 
 
An excellent survey on fault diagnosis has appeared by 
authors Barborak, Malek and Dahbura in paper [1]. Most 
classical approaches assume permanent or crash fault 
model and regular network topologies [2]. Previous work 
in this field has almost exclusively dealt with static fault 
situations, i.e., status of the nodes (faulty or fault free) does 
not change during execution of the diagnosis procedure. 
These assumptions are neither realistic nor suitable for on-
line environment where nodes may fail and recover during 
execution of the diagnosis procedure. Recently, Subbiah 
and Blough [4] propose one instance of distributed 
diagnosis in dynamic fault situation both for completely 
and not completely connected systems but assumes 
traditional crash fault model. The algorithms considering a 
combination of crash and value failures for fully connected 
network has been proposed by authors C.J.Walter et. el., in 
[3]. Very small number handles a combination of crash and 
value failures for arbitrary network topologies. These 
algorithms rely on a particular testing strategy such as test 
based or heartbeat based. Since tests are difficult to obtain 
in practice, various comparison-based approaches have 
been proposed. Tasks are duplicated on multiple processors 
and their results are compared to identify faulty ones [5]. 
The comparison-based approach is believed to be most 
practical diagnosis strategy for system diagnosis. The 
heartbeat-based schemes are of low cost usually few bytes 
and needs a single message transmission to achieve 
diagnosis between a pair of nodes. Here, in this paper an 
algorithm Two Phase Diagnosis (TPD) has been proposed 
which considers a combined heartbeat and comparison 
testing strategy under more realistic fault model for 
arbitrary network topologies. The author has also proposed 
a number of fault diagnosis algorithms and energy efficient 
fault diagnosis protocols for distributed wireless and wired 
networks suitable for general purpose and real-time 
wireless and wired distributed communication networks [6-
10]. 
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III. SYSTEM AND FAULT MODEL 
 
A System Model 

 

The communication network is assumed to be error-free, 
and deliver messages reliably. We consider a round-based 
communication model, which implies that periodically, i.e.

, at the period boundaries, messages are sent by system 
nodes. A synchronous, message-passing framework is 
assumed where the communication delay is bounded. All 
processors execute the same workload (For example 
temperature sensing from the environment) and determine 
the output value Vi. This value is communicated to all other 
nodes. An arbitrary network with connectivity k has been 
assumed where a node issues a single heartbeat message, 
which is broadcast to all nodes via intermediate nodes. 
Every node is assigned with a node-id, and can detect the 
absence or time deviance for an expected message. Nodes 
may be faulty and links are fault-free The transmission time 
tx, is the time between a node initiating a communication 
and the last bit of the message being injected into the 
network. The minimum and maximum propagation delays 
for delivering all of the message bits between any two 
neighboring nodes are denoted by tpro-min and tpro-max, 
respectively.   
 
B Fault Model 

 
We consider crash and value faults in nodes. Links are 
assumed to be fault free. The network delivers messages 
reliably. A faulty node performs its computation like a non-
faulty node but it may fail to send its value (crash fault) or it 
may send an erroneous value to another node (value fault). 
For example, a faulty mobile in adhoc network may be 
faulty due to it is switched off, out of range or an adversary 
node has corrupted the header of the message. The 
combined heartbeat and comparison based testing 
mechanism is followed to detect the faults in nodes. A state 
machine with two states, failed (1) and working (0) models 
the status of a node. The node subjected to crash fault 
simply ceases functioning without sending any message and 
the failed nodes, which may send valid but incorrect result 
to the receiver, indicate the value fault. The state holding 

time is the minimum time that a node remains in one state 
before transitioning to the other state.  
 

IV. THE ALGORITHM 
 

A Terminology 

 
We consider n as the number of nodes in the system and 
messy representing a message sent by node Y. We consider 
two fault categories: 1) The set of missing messages, are 
those messages which X believes Y failed to issue during 
round m, and 2) The set of improper logical messages, are 
those messages which are correctly delivered but disagree 
with VX, the result of X‟s own voting process on inputs 
received. The syndrome Syndrome(Y),  X, Y represents 
the union of test outcomes due to improper logical message 
and missing message. Syndromem(Y) is represented in 

vector form for each value of X, with vector entries 
corresponding to all Y values from which X receives 
messages. The vector entry corresponding to any node Y is 
a binary input: 0 corresponds to a fault-free input received 
from Y as perceived by X, and 1 represents a fault being 
perceived by X. Each node maintains its perception of the 
system state using a system level error report in the form of 
a vector, FX 

m(Y) (as received by X  from node Y over round 
m), consisting of an ordered quadruple  X,Y,m, 
SyndromeX 

m(Y) . The function Fm
tot(Y) = |UX  n, X  Y FX 

m(Y)| is used to count the number of accusations on a 
processor Y by all other processors during period m. Thus 
Fm

tot(Y) is an integer where 0  Fm
tot(Y)  (n-1). 

 

B Algorithm Assumptions 

 
For arbitrarily connected network, a restricted case is 
considered where fewer than k nodes are in the failed state 
at any given instant of time so that the network remains 
connected. Each node periodically executes the diagnostic 
workload and initiates a round of message transmissions. 
Assume an arbitrary node X initiates a round of heartbeat 
transmissions at real time t and remains in the working state 
indefinitely afterward. X will initiate another round of 
heartbeat transmissions no later than real time t+(1+)π, 
where π is the heartbeat period and  is the maximum drift 
rate of the clock with  << 1. The message can be quite 
sophisticated and can encapsulate within it information 
about the health of the node being monitored. A message 
consists of the following fields (1) Node_id: The ID of the 
node that initiated the message, (2) Seq_no: The sequence 
number of the message, (3) Val: The value associated with 
message, (4) Delay: Heartbeat delay stored in the buffer of a 
node. The Seq_no field serves to distinguish successive 
messages from the same node. The sequence number is 
incremented by 1 during every period starting from 
sequence number 0. When the maximum sequence number 
(MAX_SEQ_NUM) that can be stored in this field is 
exceeded, the sequence number is wrapped around to 0. 
Thus it is used as a logical sequence number. The Node_id 
and Seq-no fields together identify the message. Val field is 
used to check for value fault in the received message. 
Sequence numbering has been employed to differentiate the 
old diagnostic messages from the most up-to-date versions 
of them. Delay field stores the minimum time a heartbeat is 
stored at a particular node. Each node maintains an array of 
n entries, where n is the total number of nodes in the 
network. The ith entry in array stored in node X contains: (1) 
Status: Node X‟s view of node i. (state 0 or 1), (2) 
Last_seq_no: The Seq_no field of the latest heartbeat 
received from node i by node X.  
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C The Proposed Algorithm (TPD) 

 
Out of the two phases of the algorithm, during the first 
phase each node periodically execute the diagnostic work 
load and initiates the results by a round of message 
transmissions to all other nodes. A node detects a crash or 
missing message fault without receiving a heartbeat for 
duration Ttime_out.  If the message delivery and it‟s arrival at 
a receiving node is valid but incorrect (i.e., value does not 
match with it‟s own computed value), the message is 
recorded as improper logical message and the node is 
value faulty. This phase of diagnosis we call local 
diagnosis phase. In this phase a node identifies other 
node‟s validity by comparing it‟s own message with that of 
received message. The comparison need not seek for an 
exact value in the message rather can choose to consider 
range or deviance check. If the received message is well 
within the range of it‟s own value, it accepts as a correct 
message otherwise records as incorrect message. For 
example, in a mobile adhoc network, a faulty mobile node 
may not respond due to either physical damage or out of 
range. An adversary node may also send an erroneous 
message in its header, which may not be detectable during 
this phase. We show that, these faults are detected by the 
second phase of diagnosis. In the second phase these local 
results available at each node are further exchanged with 
other nodes and a counter maintained at every node is 
incremented by one for every positive diagnosis. If the 
counter value at a particular node for another node is 
greater than half of the nodes, it means that more number 
of nodes detected that node as faulty and all other nodes 
that recorded this event as fault free is accused as faulty. If 
the accusation against a node is recorded as faulty in the 
previous round, this node is considered as faulty in the 
current round. This phase of diagnosis is called global 
diagnosis phase and mainly used for accurate diagnosis of 
the system. Both the phases of two-phase diagnosis 
procedure are executed in a pipelined manner to improve 
diagnostic latency.  
 

D Basic Analysis of Algorithm 

 
The formal analysis of algorithm involves satisfying the 
two important properties as follows: (P1): Correctness: 
every node diagnosed to be faulty by a non-faulty node is 
indeed faulty (P2): Completeness: Every faulty node is 
identified. First, we consider correctness, which states that 
if a good processor accuses some other processor, the 
accused processor is indeed faulty. 
Lemma 1. If “X” is good, then FX 

m(Y)  0, implies that 
“Y” is faulty. 
Theorem 1. (Correctness).  If a good “X” declares “Y” 
faulty, „Y” is indeed faulty. 
Theorem 2. (Completeness). If “Y” is faulty, then all good 
nodes diagnose “Y” as faulty. 
 

The proofs for the lemma 1, theorem 1 and 2 is given in 
Appendix. The upper bound for recovery event and failure 
detection event is computed as follows. First we compute 
the upper bound between a node initiating a heartbeat and a 
heartbeat with the same or a higher sequence number being 
received by all other nodes is Dmaxn  =  d(k-1)(n-1)tx + 
(n+k-2)(tx + tprop-max + c) – (k-1), if the failed state holding 
time, SHTf  is at least Dmaxn  where, d is the maximum 
number of neighbors of any node, k is connectivity of the 
network, n is number of nodes,  = is a small positive 
constant and is the smallest time such that a heartbeat send 
in tx -  time is an invalid heartbeat and c is the comparison 
time between received value and the node‟s own computed 
value. Dmaxn is the theoretical latency in detecting a 
recovery event and was derived by taking a particular 
sequence of events to represent an worst case scenario. A 
crash or missing message fault is detected by time out. 
Upon receipt of a new heartbeat, the period of time a node 
that is continuously in the working state waits for the next 
new heartbeat before detecting a fault event, called the 
timeout period Ttimeout is (1+2ρ) + (1+ρ)(Dmaxn – 
heartbeat.delay) where heartbeat.delay is the value in the 
delay field of the last heartbeat received. Due to the 
existence of multiple paths between nodes, it is possible 
that a node times out thereby detecting a fault event and 
then receives a stale heartbeat. Arrival of this stale 
heartbeat does not indicate a recovery event. Hence, when 
nodes time out, they discard any heartbeats they may 
receive from the node just diagnosed to be faulty for a 
predetermined amount of time Texist. Texist refers to the 
maximum possible time the heartbeat can exist in the 
network and is = (1+2ρ) + (1+ρ) Dmaxn + n(tpro-max – tpro-min 
+ c). A heartbeat is said to exist in the network if either the 
heartbeat is propagating in the network or the heartbeat is 
stored in some node‟s buffer. The value of Texist is the 
theoretical failure detection latency. A node needs to stay 
for large enough time in the failed state such that all other 
fault free nodes detect it‟s state. So after Tout a node keeps 
on rejecting the heartbeat for a maximum amount of time 
called heartbeat rejection time Treject =  2ρm + 2ρDmaxn  + 
n(1+ρ)(tpro-max – tpro-min + c). The heartbeat rejection time is 
the period of time a node X discards heartbeats from a 
node Y after diagnosing node Y to be faulty. Since arrival 
of a stale heartbeat is not a recovery event, for a genuine 
recovery event to be detected, the failed state holding time 
should be made sufficiently large to guarantee that no new 
heartbeat message arrives during the rejection time. The 
failed state holding time, denoted by SHTf, is the minimum 
time a node remains in the failed state before transitioning 
to the working state. The failed state holding time (SHTf ) 
is Texist + (1+ρ) Treject –  tx. The derived expressions are 
closely related with the expressions that appears in paper 
[4]. It can be observed that Texist is the theoretical latency in 
detecting a failure event.  
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V. SIMULATION RESULTS 

 

Algorithm was simulated on randomly generated networks. 
tx, tpro-min, tpro-max, c, Poisson mean, ρ ,k and π  were kept 
fixed at 0.002, 0.008, 0.08, 0.05, 1, 0.001,3 and 40 seconds

, respectively, for all simulations. Simulations were 
performed on networks of sizes 8, 16, 32, 64, 128, and 256 
using discrete event simulation techniques. The dynamic 
nature of the system was modeled using a Poisson process. 
When an event occurs on a node, the next event time is 
computed by adding the state holding time and the time as 
given by the poison process. In all simulations, the 
minimum state holding times for both failed and working 
states were set to the failed state holding time. 
  

Figure 1. Diagnostic Latency versus n. 

 

 

 A 

Diagnostic Latency and Message Complexity 

 
Fig. 1 shows the theoretical diagnostic latency i.e., in 
detecting either a failure or recovery event which ever is 
higher. The diagnostic latency is variable due to the 
difference in the actual propagation time of the last 
heartbeat and the delay tracked by the intermediate nodes. 
Hence, the more links that are traversed by the last heartbeat 
that is sent by a node before it could fail, the more varied 
the latency will be. Fig 2 shows the number of messages 
exchanged per heartbeat period per link in an n-node e-link 
network. The number of messages increases linearly with n 
which shows the algorithm is linearly scalable. The message 
complexity is O(n.e). 

 
VI. CONCLUSION 

 
The paper proposed an on-line two-phase diagnosis 
algorithm considering a realistic fault model based on 
monitoring the system message traffic generated due to 
execution of normal workload. The algorithm propagates 
status information as quickly and through as many 
redundant paths as possible to allow it to effectively handle 
dynamic situations. All nodes can change state at the same 
time or a cascade of status changes can occur, while 
maintaining a notion of correctness at all times. The 
proposed algorithm TPD has been able to handle these 
behaviors effectively in arbitrary-connected networks with 
diagnostic latency of O(1) and message complexity of (n.e). 
Our future works include the validation of results using 
network life time as the main parameter which will address 
the resource constraint in wireless adhoc network.   
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APPENDIX 

 
Lemma 1. If “X” is good, then FX 

m(Y)  0, implies that “Y” 
is faulty. 
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Proof: We prove this by complete induction on the number 
of rounds of algorithm we use. If FX 

m(Y)  0, then some 
message sent from Y to X was bad. If the message was 
simply missing or was value faulty, then Y is in fact bad. 
The two remaining reasons that X would record an 
accusation of Y is if Y failed to accuse some bad processor, 
or if Y accused some good processor in an earlier frame. By 
induction we can assume that the previous majority votes on 
the fault status of other processors are correct. Since all 
faults are assumed to be symmetrically dispersed, if Y failed 
to accuse a bad processor Z, then Y is bad, as all processors 
including Y must have received the same bad message from 
Z. If Y accused a good processor Z, then Y must be bad 
since no majority of good processors received a bad 
message from Z. 
 

Theorem 1. (Correctness). If a good “X” declares “Y” 
faulty, “Y” is indeed faulty. 
 
Proof. We prove this by complete induction on the number 
of rounds used by algorithm. The only situation in the 
algorithm that a good node could declare another node 
faulty is when Ftot

m(Y)  n/2. This can arise only if over 
half of all nodes send an accusation to X. Since we assume 
that over half of all nodes are nonfaulty, some good node Z 
must have contributed by sending an accusation of Y to X. 
By Lemma 1, we thus know that Y is indeed faulty. 
 

Theorem 2. (Completeness). If “Y” is faulty, then all good 
nodes diagnose “Y” as faulty. 
 
Proof. We prove this by complete induction on the number 
of rounds used in algorithm. For round m, we assume that 
for smaller number of rounds this property holds. If Y is 
faulty in earlier rounds then by induction we can assume 
that X declared Y faulty earlier, and thus since declarations 
are monotone, X declares Y faulty. If Y is faulty in this 
round, it must be either benign faulty, in which case all 
messages are benign, or symmetric-value faulty. If the 
symmetric-value faulty nodes produces a good value then it 
is not a fault. Thus even symmetric-value faulty nodes must 
produce bad values. In either case all good processors will 
accuse Y of being faulty, sending FX

m(Y) to all other 
processors. Since we assume there are a majority of good 
processors, there will be a majority of votes to condemn Y, 
and all good processors will declare Y faulty. 
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