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ABSTRACT
Source direction of arrival (DOA) estimation is one of the
challenging problem in wireless sensor network. Several meth-
ods based on maximum likelihood (ML) criteria has been
established in literature. Generally, to obtain the exact
ML (EML) solutions, the DOAs must be estimated by opti-
mizing a complicated nonlinear multimodal function over
a high-dimensional problem space. An adaptive particle
swarm optimization (APSO) based solution is proposed here
to compute the ML functions and explore the potential of
superior performances over traditional PSO algorithm. Sim-
ulation results confirms that the APSO-ML estimator is sig-
nificantly giving better performance at lower SNR compared
to conventional method like MUSIC in various scenarios at
less computational costs.

Categories and Subject Descriptors
H.4 [Wireless Sensor Network Application]: Source
localization; D.2.8 [Array sinal processing]: [performance
measures]

General Terms
Theory
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1. INTRODUCTION
A wireless sensor network consists of groups of sensors

or nodes using wireless links to perform distributed sensing
tasks by coordinating among themselves. These sensors are
deployed for carrying out specialized tasks like surveillance
and security, environmental monitoring, transport, preci-
sion agriculture, manufacturing and inventory tracking and
health care [1]. The principal advantage is their ability to
be deployed in almost all kinds of terrain with hostile en-
vironment where it might not be possible or difficult to use
conventional wired networks. DOA estimation is an impor-
tant problem in WSN to estimate the source location which
is an well-known problem in the fields of radar, sonar, radio-
astronomy, underwater surveillance and seismology etc. One
of the simplest versions of this problem is the estimation
of the directions-of-arrival (DOAs) of narrow-band sources
where the sources are located in the far field of the sensor
array [16].

Many high resolution suboptimal techniques have been
proposed and analyzed, such as multiple signal classification
(MUSIC) [12], the minimum variance method of Capon, es-
timation of signal parameters via rotational invariance tech-
nique (ESPRIT) and more [5]. The ML technique is used
here because of its superior statistical performance com-
pared to spectral based methods. The ML method is a stan-
dard technique in statistical estimation theory. A likelihood
function can be formulated easily if we know the observed
parametric data [13]. The ML estimate is computed by max-
imizing the likelihood function or minimizing the negative
likelihood function with respect to all unknown parameters,
which may include the source DOA angles, the signal covari-
ance, and the noise parameters. Since the ML function is
multimodal, so direct optimization is seems to be unrealistic
due to large computational burden.

There are different optimization techniques available in
literature for optimization of ML function like AP-AML [16],
simulated annealing (SA) [15], genetic algorithms (GA) [6]
fast EM and SAGE algorithms [2] and a local search tech-
nique e.g. Quasi-Newton methods. GA is one of the most
powerful and popular global search tools; however, its im-



plementation is somewhat cumbersome due to slow conver-
gence. All these techniques have several limitations because
of multidimensional cost function which need extensive com-
putation, good initialization is also crucial for global opti-
mization and we can not guarantee that these local search
techniques always have global converge.
The evolutionary algorithms like genetic algorithm [11],

particle swarm optimization and simulated annealing [15]
can be designed to optimize the ML function. Genetic al-
gorithm [6] and particle swarm optimization [7] had already
used as a global optimization technique to estimate the DOA
for uniform array. Here the authors are trying to use these
evoloutionary technique in distributed sensor network to es-
timate sources angle of arrival.
The adaptive particle swarm optimization (APSO) algo-

rithm is applied here to ML criterion functions for accu-
rate DOA estimation. As an emerging technology, PSO has
attracted a lot of attention in recent years, and has been
successfully applied in many fields, such as phased array
synthesis [9], electromagnetic optimization [10]. Most of the
applications demonstrated that PSO could give competitive
or even better results in a faster and cheaper way, compared
with other heuristic methods such as GA. Recently adap-
tive PSO algorithm has been successfully applied in power
dispatch problem [8] and shown that it is giving better per-
formance compared to different constrained PSO.
Due to the multimodal, nonlinear, and high-dimensional

nature of the parameter space, the problem seems to be
a good application area for APSO, by which the excellent
performance of ML criteria can be fully explored. Via exten-
sive simulation studies, we demonstrate that with properly
chosen parameters, APSO achieves fast and robust global
convergence over PSO and MUSIC.

2. DATA MODEL AND MAXIMUM LIKE-
LIHOOD ESTIMATION PROBLEM

Let us consider an array of M WSN nodes are distributed
in an arbitrary geometry and received signals form N nar-
row band far-field signal sources at unknown locations. The
output of sensor nodes modeled by standard equation as

x(i) = A(θ)s(i) + n(i), i = 1, 2, . . . , L (1)

where s(i) is the unknown vector of signal waveforms, n(i)
is unpredicted noise process, , L denotes the number of data
samples (snapshots). The matrix A(θ) has the following
special structure defined as

A(θ) = [a(θ1), . . .a(θN )] (2)

where a(θ) is called steering vector and θ = [θ1, θ2, . . . , θN ]T

are the parameters of interest or true DOA’s. The exact
form of a(θ) depends on the position of the nodes in sensor
network.
Further, the vectors of signals and noise are assumed to be

stationary, temporarily white, zero-mean complex Gaussian
random variables with the following second-order moments
given by

E[s(i)s(j)H] = Sδij E[s(i)s(j)T] = 0

E[n(i)n(j)H] = σ2
Iδij E[n(i)n(j)T] = 0 (3)

where δij is the Kronecker delta, (·)H denotes complex con-
jugate transpose, (·)T denotes transpose, E(·) stands for ex-
pectation.

Under the assumptions taken above, the observation pro-
cess, x(i), constitutes a stationary, zero-mean Gaussian ran-
dom process having second-order moments

E[x(i)x(i)H] = R = A(θ)SAH(θ) + σ2
I (4)

The problem addressed herein is the estimation of θ along
with the parameter in S and σ2(noise power) from a batch
of L measured data x(1), . . . ,x(L).

Under the assumption of additive Gaussian noise and com-
plex Gaussian distributed signals we can have negative log-
likelihood function [7] is given as

ℓ(θ,S, σ2) = log|R|+ tr{R−1
R̂} (5)

where R̂ is the sample covariance matrix and it defined as

R̂ =
1

N

N
∑

i=1

x(i)x(i)H (6)

The ML criterion function can be concentrated with respect
to S and σ2 by following [3]. The stochastic maximum like-
lihood (SML) estimates of the signal covariance matrix and
the noise power are obtained by inserting the SML estimates
of θ in the following expressions

Ŝ(θ) = A
†(θ)

(

R̂− σ̂2
I
)

A
†H(θ) (7a)

σ̂2(θ) =
1

M −N
Tr{P⊥

A(θ)R̂} (7b)

whereA† is the psedo-inverse ofA andP⊥
A is the orthogonal

projection onto the null space of AH and are defined as

A
† =

(

A
H
A
)−1

A
H (8a)

PA = AA
† (8b)

P
⊥
A = I−PA (8c)

Therefore the concentrated form of the EML function now
can be obtained bu using (7) in (5) as

fEML(θ) = log|A(θ)Ŝ(θ)AH(θ) + σ̂2(θ)I| (9)

Stoica and Nehorai [14] proved that for uncorrelated sources,
the statistical performances of CML and EML are similar;
while for highly correlated or coherent sources, the perfor-
mance of UML is significantly superior.

3. ADAPTIVE PARTICLE SWARM OPTIMIZA-
TION (APSO)

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eber-
hart and Dr. Kennedy in 1995 [4]. The swarm is typi-
cally modeled by particles in multidimensional space that
have a position and a velocity. Consider a D-dimensional
problem space and a swarm consisting of P particles. The
position of the ith particle is a D-dimensional vector xi =
[xi1, xi2, . . . , xiD]. The velocity of this particle is represented
as vi = [vi1, vi2, . . . , viD]. These particles fly through hyper-
space (i.e., RD) and have two essential reasoning capabili-
ties: their memory of their own best position and knowledge
of the global or their neighborhood’s best. The best previ-
ous position of the ith particle, which gives the best fit-
ness value, is denoted as pi = [pi1, pi2, . . . , piD] and the best



position found by any particle in the swarm is represented
by pg = [pg1, pg2, . . . , pgD]. In a minimization optimiza-
tion problem, problems are formulated so that best simply
means the position with the smallest objective value. Mem-
bers of a swarm communicate good positions to each other
and adjust their own position and velocity based on these
good positions. So a particle has the following information
to make a suitable change in its position and velocity:
At every iteration, the velocity and the position of each

particle are updated according to the following equations:

v
n+1
j = wn

v
n
j + c1r

n
1 ⊙ (pn

j − x
n
j ) + c2r

n
2 ⊙ (pn

g − x
n
j )

(10)

x
n+1
j = x

n
j + v

n+1
j (11)

where ⊙ denotes element-wise product, j = 1, 2, . . . , P , and
n = 1, 2, . . . , indicates the iterations, w is a parameter called
the inertia weight, c1 and c2 are positive constants referred
to as cognitive and social parameters respectively, r1 and r2
are D-dimensional vectors consisting of independent random
numbers uniformly distributed between 0 and 1, which are
used to stochastically vary the relative pull of pi and pg in
order to simulate the unpredictable component of natural
swarm behavior. The inertial weight w is considered critical
for the convergence behavior of PSO. A larger w facilitates
searching new area and global exploration while a smaller
w tends to facilitate local exploitation in the current search
area. In this study, w is selected to decrease during the opti-
mization process. In order to increase the search ability, the
algorithm should be redefined in the manner that the move-
ment of the swarm should be controlled by the objective
function. In [8], the particle position is adjusted such that
the highly fitted particle (best particle) moves slowly when
compared to the lowly fitted particle. This can be achieved
by selecting different weight wi values between wmin and
wmax for each particle in a particular iteration is according
to their rank, as in the following form:

wi = wmin +
(wmax − wmin)× Ranki

Total Population
(12)

So, from 12 it can be seen that the best particle takes the
first rank, and the inertia weight for that particle is set to
the minimum value while that for the lowest fitted particle
takes the maximum inertia weight, which makes that parti-
cle move with a high velocity.

4. APSO-EML DOA ESTIMATION
Here we describe the formulation of the APSO algorithm

for EML optimization to estimate source DOA’s. At first ini-
tialize a population of particles in the search space with ran-
dom positions and random velocities constrained between 0
and π in each dimension [7]. The N -dimensional position
vector of the j th particle takes the form xj = [θ1, . . . , θN ],
where θ represents the DOAs. A particle position vector
is converted to a candidate solution vector in the problem
space through a suitable mapping. The score of the mapped
vector evaluated by a likelihood function fEML which is
given in (9), is regarded as the fitness of the correspond-
ing particle.
To evaluate the likelihood function fEML required the the

data from all the nodes for K number of snapshots. During
the evolution of algorithm, in every iteration each particle

update their velocity and position, then evaluate the global
best. The manipulation of a particles velocity according to
(10) is regarded as the central element of the entire optimiza-
tion. Since there was no actual mechanism for controlling
the velocity of a particle, it is necessary to define a maxi-
mum velocity to avoid the danger of swarm explosion and
divergence. The velocity limit can be applied along each
dimension at every node as

vnj =

{

VMAX, if vnj > VMAX

VMIN, if vnj < VMIN
(13)

In this work, we keep the limitation of VMAX is set to the
half value of the dynamic range, i.e., VMAX = 0.5. The new
particle position is calculated using (10).

The optimization iteration will be terminated if the speci-
fied maximum iteration number is reached. The final global
best position pg is taken as the ML estimates of source DOA.

5. SIMULATION RESULTS AND DISCUS-
SIONS

Here we present a numerical example to demonstrate the
performance of APSO based DOA estimation using (9) against
PSO and MUSIC which is the best known and well inves-
tigated algorithm. The performances of those methods are
compared in two ways: (a) the DOA estimation root-mean-
squared error (RMSE), which is calculated as

RMSE =

√

√

√

√

1

NNrun

Nrun
∑

l=1

N
∑

n=1

(

θ̂n(l)− θn
)2

(14)

where N is the number of sources, θ̂n(l) is the estimate of
the nth DOA achieved in the lth run, θn is the true DOA of
the nth source; and (b) the ability to resolve closely spaced
sources known as probability of resolution (PR). By defi-
nition, two sources are said to be resolved in a given run if
both |θ̂1−θ1| and |θ̂2−θ2| are smaller than |θ1−θ2|/2. Let us
assume that two equal-power, uncorrelated signals impinge
on distributed wireless sensor network with sixteen sensors
from 150◦ and 158◦. The SNR varies from -20 dB to 30 dB
with the step size of 1 dB taken for simulation. The func-
tion fEML is optimized using PSO and APSO algorithms
for 20 snapshots in case of PSO and APSO, but 1000 snap-
shots are taken for MUSIC. The Fig. 1 gives the the DOA
estimation RMSE values obtained using PSO-EML, APSO-
EML, and MUSIC as a function of SNR. Fig. 2 shows the
resolution probabilities (RP) for the same methods. Two
sources are considered to be resolved in an experiment if
both DOA estimation errors are less than the half of their
angular separation.

As can be seen from Fig. 1 and Fig. 2, APSO-EML
yields significantly superior performance over PSO-EML as
a whole, by demonstrating lower DOA estimation RMSE
and higher resolution probabilities. The accurate DOA esti-
mates are observed because 1) EML criterion functions are
statistically optimal although computation-extensive, and 2)
the designed APSO is a robust and reliable global optimiza-
tion algorithm. MUSIC, on the other hand, produces less
accurate estimates.

6. CONCLUSION
In this paper, a modified PSO known as APSO is pro-

posed to estimate the source DOA using ML function. With
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Figure 1: DOA estimation RMSE values of PSO-

EML, APSO-EML, and MUSIC versus SNR. Two

uncorrelated sources impinge on WSN with 16 sen-

sors at 150◦ and 158◦.

newly introduced features matching scheme and intelligent
initialization, carefully selected evolution operators and fine-
tuned parameters, the APSO-ML estimator achieves fast
convergence. Simulation results demonstrate that APSO-
ML asymptotically attain statistical CRLB at lower SNR
than other estimators like MUSIC.
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