Anomaly Detection in Ethernet Networks
using Self Organizing Maps

Saroj Kumar Panigrahy, Jyoti Ranjan Mahapatra,
Jignyanshu Mohanty, and Sanjay Kumar Jena

Department of Computer Science and Engineering
National Institute of Technology Rourkela, 769 008, Odisha, India
{panigrahys, skjena}@nitrkl.ac.in

Abstract. Anomaly detection attempts to recognize abnormal behavior
to detect intrusions. We have concentrated to design a prototype UNIX
Anomaly Detection System. Neural Networks are tolerant of imprecise
data and uncertain information. A tool has been devised for detecting
such intrusions into the network. The tool uses the machine learning ap-
proaches ad clustering techniques like Self Organizing Map and compares
it with the K-means approach. Our system is described for applying hi-
erarchical unsupervised neural network to intrusion detection system.

Keywords: Intrusion detection, anomaly detection, self organizing map,
neural networks.

1 Introduction

A secure computer network is one that assures data confidentiality, data and
communications integrity and protection from denial of service (DOS) attacks
[1]. The paradigm for securing computer networks was eventually replaced by
the notion of intrusion detection [2]. There are many types of intrusion detection
systems, but most can be classified in one of two ways [1]. First, an intrusion
detection system can be classified based on the data source that it uses. A host-
based intrusion detection system uses the audit trails of the operating system
as a primary data source. For example, it may use records of user sessions to
detect particular sessions that constitute an intrusion. A network-based intrusion
detection system, on the other hand, uses network traffic information as its main
data source. An example would be a system that uses TCP header information.
When analyzing any intrusion detection system, three factors must be considered—
efficiency of the system, timeliness of detection and accuracy of detection [2]. The
basic idea behind the system is that hierarchies of self organizing maps (SOM)
take on a divide and conquer approach to concisely model the normal behavior
of the system. Given the model of normal behavior, running data that corre-
sponds to some suspicious behavior through the system will then exhibit some
telltale signs that can be used to raise an alarm. The system described herein is
a network based anomaly detection system that uses TCP dump dataset [3].

Anomaly Detection in Ethernet Networks using Self Organizing Maps 301
2 Advantages of SOM over K-means Approach

Authors are ambiguous over which is the best method for implementing the
anomaly detection technique. Some support the SOM approach and some favour
the K-means approach. But one major area of concern is not the difficulty of
run time complexity but the difficulty of implementing it over dataset. The K-
means approach needs a mean centroid to be defined at the outset of the run.
But network traffic data is variable and deviates randomly over time. So, any
randomly generated initial mean value is difficult to implement on variable net-
work traffic. On the other hand SOM learns itself according to given data. Also
k-means approach suffers from the problem of local optima. As the initial cen-
troid value and number of clusters is chosen, it might be away from the optimal
centroids and the end result for SOM is better than K-means. Search space is
better explored by SOM due to the effect of the neighbourhood parameter which
forces units to move according to each other in the early stages of the process.
K-means gradient orientation forces a premature convergence which, depending
on the initialization, may frequently yield local optimum solutions.

3 Implementation Details

This section describes about the dataset, SOM architecture, data preprocessing,
SOM training, calibrating The code book vectors, and Running the dataset re-
ferring with code book vector.

Dataset
The dataset available for constructing the system consisted of nearly five million
connections of labeled training data and two million connections of test data.
The connections were in chronological order. Each connection was described by
41 features. The features can be categorized as— basic TCP features, content
features, time based traffic features, and host based traffic features [4]. A con-
nection in the training data was either a normal connection or was one of 24
different attack types. Each connection was either normal or fell into one of the
categories of attacks— remote-to-local, user-to-root, denial-of-service, probing.
From the available features, six were selected for use in the system— du-
ration, protocol type, service, flag, destination bytes, and source bytes. Three of
these features— duration, destination bytes, and source bytes had continuous val-
ues and Protocol type, service, and flag had discrete values. It should be noted
that the entire dataset consisting of the seven million connections was not used
in constructing the system. Only a 10% dataset from among the connection was
used in order to make the training computationally feasible and most traffic has
a typical pattern. Capturing the pattern of the traffic once is sufficient than
doing it repeatedly. The 10% dataset represented the whole traffic connection
for the training purpose. The dataset was extracted from the KDD Cup dataset
which consisted of TCP dump data of DARPA Intrusion Detection Evaluation
[3].

302 S K Panigrahy, J R Mahapatra, J Mohanty, and S K Jena

SOM Architecture

A SOM architecture with a single level was used [2]. Such an architecture was
shown to be effective for the purpose of intrusion detection. The algorithm was
fed with the above six parameters chosen. The data was preprocessed to get into
a form that was program readable. To extract the TCP dump data, a network
sniffer was used. The sniffer was placed on a central hub through which all traffic
is routed so that it can capture all packets in promiscuous mode. It is a static
dataset and used to standardize the algorithm for use on a more dynamic traffic
data. The single level map model the behavior of the computer network with
respect to time and given feature.The data flow in SOM is shown in following
Figure.

Data Data Data Pre- Pattern
Collection Reduction processing Discovery

Data Preprocessing

The first step in preprocessing the data involved removing all the attack connec-
tions from the training dataset, leaving only the normal ones. Care was taken to
preserve chronological order. The second step in preprocessing the data involved
extracting each feature from this file. This resulted in a sequence of feature val-
ues, one per feature. Next, because three of the six features consisted of discrete
string values, a format that cannot be fed directly into the SOM, these features
had to be enumerated. The result of the extraction and enumeration was six
sequences of numbers, with each sequence corresponding to a feature. The nth
entry in all of these sequences corresponded to the six features for the nth con-
nection in the dataset. As is, if the values in each sequence were fed to the maps,
no temporal relationship would have been encoded. In order to encode ordering
and frequency relationships in the patterns that the maps would see, a FIFO
buffer was used [5]. For a buffer of size n, the basic form of this algorithm is of
following form:

1. The values of the sequence are fed into the buffer in chronological order.

2. Once the n positions of the buffer are filled, a pattern is generated.

3. When the next value in the sequence is observed, the oldest value currently
in the buffer is discarded, the remaining values in the buffer shift by one so
that the vacated position is filled and the next value is placed in the empty
location. This generates the next pattern.

Training the SOM

The map was trained on a block of 15,000 consecutive connections, a fraction of
the total dataset available after the first preprocessing stage. Although training
on more patterns would allow the system to model a wider range of normal be-
havior, it would make the training of the maps difficult given the available time
line. The maps were trained using C. The result was a 10 x 10 map. Training

Anomaly Detection in Ethernet Networks using Self Organizing Maps 303

uses all the mathematical calculations as described in [6]. For an input pattern
given to the map, its distance to each mapping unit is found out and normalized.
In this way, patterns close to map units yield a normalized distance close to one,
and patterns far away from it yield a normalized distance close to zero. This
normalization was done so that the values for all the features would have the
same range. Otherwise, certain features would dominate the distance measure
used in training, and thus the training of the map, simply because they had a
larger range and not necessarily because they were more significant. For each
pattern, the normalized distance to each center in the map was recorded, result-
ing in a six dimensional vector for each map. The vectors for all the maps were
then concatenated to form one vector of dimension 100.

Calibrating the Code Book Vectors

The code book vectors were calibrated with carefully selected input patterns so
that attack patterns are not there [6]. These normal input data patterns map
to some of the mapping units and these mapping units are labeled as normal So
the code book entries represent the anomalous as well as the normal patterns
and are labeled. During testing any pattern that doesnt match to these units
are termed anomalous and an alarm is raised.

Running the Dataset

The dump file from KDD dataset is run referring the code book vectors and
the output is generated along with labels signifying which input patterns were
termed as anomalous. The false positive and false negative rates are calculated
based on the output type, whether it is anomalous or not, and the input pattern,
whether it was actually an attack packet.

4 Results

The algorithm was run on the test dataset and according to the given architec-
ture. First, the test data was preprocessed, the SOM was trained with training
data, the code book entries were labeled by calibrating with normal connections,
and then the resulting code book entries were used for running the algorithm.
Using the SOM implementation, the following results were obtained.

— Dimension of grid used: 10 x 10

— Samples Taken for training: 15,000

— Samples taken for testing: 13,500

— Attacks detected: teardrop, portsweep, ipsweep, backdoor, nmap, neptune,
satan, phf, warezmaster

— Attacks not detected: pod, buffer_overflow, guess_passwd, imap, ftp_write,
toolkit

— Dataset: KDD 10% unlabelled training dataset and 10% labeled testing
dataset

— False Positive rate: 2/13500 = 1.07%

— False Negative rate: 145/13500 = 0.015%

304 S K Panigrahy, J R Mahapatra, J Mohanty, and S K Jena

The efficiency of the anomaly detection tool is reflected from the false positive
rate, false negative rate and the number of attacks that were detected. In this
tool, false positive rate was found to be very low. On the other hand, in the small
dataset taken, false negative rate was also found to be low. But the system is
inefficient because a number of attacks were not detected— pod, buffer_overflow,
guess_passwd, imap, ftp_write, toolkit. The low level of false negative rate was
due to the reason that these are not DoS type of attacks and the six parameters
we chose for implementing the algorithm were identical in all respects for these
attack packets and the normal packets. As these packets are encountered less
in number in the traffic, the numerator value in calculation becomes small, and
hence the low false negative rate.

A major analysis would be around the detection of the mapping units of the
10 x 10 grid. The points of the grid where most normal packets match, i.e., the
frequency with which the packets map to particular grid units. Figure 1 shows
the number times each node in the top level map was the BMU for the normal
training data. Clearly, some nodes are BMUs more frequently than others, but
most of the nodes receive their fair share of hits. However, nodes 10, 17, 18, 26,
27, 28, 29, 38, 48, 55, 57, 58, 59, 60, 66, 67, 68, 69, 70, 79, 80, 89, 90, 99, 100
stand out because they receive relatively few hits. Thus, these nodes could be
considered to be associated with abnormal behavior.

3007

250

200

Frequency
=
v
(=]

100

50

oMAMLLLLLRRLLLY HI._I,n, I | 111} I ‘ I “,l,l‘ .“‘I,I‘I Il |I|l LLLLHETS “
70 80

1 10 20 30 40 50 60 90 100
Node Number

Fig. 1. Hits per node of normal training data

Anomaly Detection in Ethernet Networks using Self Organizing Maps 305

The performance of this system is comparable to that of the systems par-
ticipating in the DARPA Intrusion Detection Evaluation 1999. The best system
in the evaluation had an overall false negative rate of about 0.33 and an overall
false positive rate of 0.0002. This system used all the available TCP connection
features, and was trained on the entire available training data set which is shown
in Table 1. Given that the system presented in this paper used only a fraction
of this information, its performance is solid.

Table 1. Fraction of Data used

|Number of Connections Used|Fraction of Total

Training SOM 15,000 0.05
Labeling SOM 4,94,021 0.1
Testing SOM 3,11,029 0.1

5 Conclusions

A network based anomaly detection system that uses a hierarchy of SOMs was
presented.The system was found to detect just over 60% of the attacks with
a manageable rate of false alarms. Although the results of this work should
be interpreted with caution, it is suggested that the system presented performs
comparably to some of the better systems that took part in the DARPA Intrusion
Detection Evaluation. The system was not tested on the full test dataset, i.e.,
it may not have encountered some of the more difficult attacks but it was also
never trained on the full training dataset, meaning that it may not have had a
chance to learn the full range of normal behavior.

References

1. Mukherjee, B., Heberlein, L.T., Levitt, K.N.: Network intrusion detection. IEEE
Network 8(5), 26-41 (1994)

2. Lichodzjewski, P., Zincir-Heywood, A.N., Heywood, M.: Dynamic intrusion detec-
tion using self-organizing maps. In: Proceedings of the 14th Annual Canadian In-
formation Technology Security Symposium. Ottawa, Canada (May 2002)

3. KDDCup: The third international knowledge discovery and data mining tools com-
petition (May 2002), http://kdd.ics.uci.edu/databases/kdd99cup/kdd99cup.
html

4. Lee, S.C., Heinbuch, D.V.: Training a neural network based intrusion detector to
recognize novel attacks. IEEE Transactions on Systems, Man and Cybernetics (Jul
2001

5. Lee,)VV., Stolfo, S.J., Chan, P.K., Eskin, E., Fan, W., Willer, M., Hershkp, S., Zhang,
J.: Real time data mining based intrusion detection. In: Proceedings of DISCEX II
(Jun 2001)

6. Kohonen, T.: Self Organizing Maps. Springer, 3rd edn. (2001)

