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Abstract— This paper covers the FPGA implementation 

of the International Data Encryption Algorithm (IDEA) 
using Very Large Scale Integrated Circuits Hardware 
Description Language (VHDL) with device as Vertex II Pro 
XC2VP30 using Xilinx – ISE 10.1. IDEA is very much fast 
and entirely based on internal group operations-XOR, 
modulo addition and modulo multiplication. So unlike other 
symmetric key block ciphers like AES or DES, there is no 
need for S-Boxes or P-Boxes in round operations. To use an 
encryption algorithm in real time applications like Cable TV, 
Video conferencing, the speed i.e. the data throughput rate 
needs to be high. The multiplication modulo (2n + 1) is the 
main module of this IDEA block cipher, as this module is 
highly computation intensive and consumes a lot of time. 
Due to regularity of IDEA, it has been implemented in 
hardware several times using different architectures. This 
paper mainly focuses on implementing a new algorithm and 
architecture for modulo (2n + 1) multiplication which takes 
the input in a diminished-1 form [2] and produces the 
product in the same form. This is a new modulo (2n + 1) 
approach for implementing IDEA in hardware. The 
proposed multiplier optimizes the time by producing n/2 
partial products and handles zero values very efficiently. The 
performance of the proposed multiplier is analyzed in terms 
of time delay and circuit complexity and is compared with 
some existing schemes of diminished-1 modulo multipliers 
like Zimmerman [15], Sousa and Chaves [10] and Efstathiou 
[15][ 3]. 
 

I. INTRODUCTION 
Cryptography is the art of keeping data secure from 

unauthorized access so as to ensure that only the intended 
users can access it. As computer technologies are getting 
advanced, more and more cryptographic applications are 
used in day-to-ay life. They are mainly used to support other 
applications which are very much sensitive to data security 
such as smart cards and commercial data exchange over a 
network. Not only for personal use but cryptographic 
algorithms are also very important in every aspect of 
professional activities. A cryptographic algorithm generally 
consists of some specialized arithmetic computations which 
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are complicated in terms of time complexity. It is because of 
the fact that these algorithms work with large amount of data 
either in blocks or simply in streams. Although a single 
traditional CPU is enough for performing these 
computations, but for a machine which works as a server in a 
huge network gets millions of client requests for performing 
cryptographic operations for them individually. This makes 
the workload huge. The computational resources may also 
be limited for example in smartcards, mobile phones, 
handheld computers, etc. Moreover if the associated network 
is of high speed, the speed of the necessary cryptographic 
computations also needs to be taken into account. For 
example in transmitting audio and video data for cable TV, 
pay TV, video conferencing and sensitive financial and 
commercial data, the speed of the cryptographic module to 
be embedded ,needs to be very high. Moreover for security 
related issues in wireless and sensor networks, there is a need 
for separate hardware device with very high processing rate 
because of limited battery of the nodes and for optimizing 
the bandwidth efficiency. So from the viewpoint of high 
speed and throughput, traditional software implementations 
of these complicated cryptographic algorithms are not 
efficient in real time applications like ATM, VPN, etc. This 
forces the system designers to go for hardware 
implementation of the cryptosystems [8]. Traditionally 
hardware implementations are based on ASIC technology, 
but they are not quite affordable every time especially in 
monetary terms. Moreover these ASICs are not adaptable to 
new changes once the hardware is built. The more efficient 
and convenient method is to use FPGA platforms [5] which 
provides sufficient logics and storage elements on which any 
complex algorithm can be implemented. They are adaptable 
to new changes and their granularity matches quite well with 
the cryptographic algorithms. 

In this paper, the cipher used is a symmetric key block 
cipher named IDEA. It takes its input as 64 bit plain text and 
gives a 64 bit cipher text as output using a 128 bit key. While 
working on plain text, it divides the input data into 16 bit 
sub-blocks and operates on each block. It is described as one 
of the most secure block algorithm due to its high immunity 
to attacks. 
In this paper, we have discussed about hardware 
implementation of IDEA block cipher using VHDL. The 
main objective here is to design an efficient and fast modulo 
multiplier which is to be used in the entire IDEA algorithm. 
The organization of the rest of the paper is as follows. The 
previous hardware and software implementations are 
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covered in section II. Section III describes the IDEA cipher 
and its detailed operations as well as modules. Section IV 
describes basic idea of diminished-1 representation and the 
algorithm for proposed modulo (2n+1) multiplication. In 
Section V, the architecture of the proposed multiplier is 
described. Section VI describes the performance reviews and 
comparisons with previous schemes and finally section VII 
concludes the paper. 

II. PREVIOUS WORK 
In spite of the fact that IDEA works with 16 bit word blocks, 
software implemented IDEA cannot reach the speed that is 
required for online encryption in high speed networks. IDEA 
was implemented in software by Ascom, the patent holder of 
IDEA, and it achieved an encryption rate of 23.53 Mbps. 
Helger [16] proposed an approach using the Intel Pentium II 
233MHz machine and achieved an encryption rate of 32.9 
Mbps. Mencer [18] proposed a design of IDEA processor 
which achieved 528 Mbps on 4 XC4020XL devices. The 
first VLSI implementation of IDEA was developed and 
verified by Bonnenberg [17] using a CMOS technology with 
an encryption rate of 44 Mbps. With a system clock 
frequency of 25 MHz, Curiger et al. performed 177 Mbps 
VLSI implementation of IDEA [4]. Wolter reported a 355 
Mbps VLSI implementation [9] in 1995. This is followed by 
Salomao’s approach of single round implementation on chip 
with 424 Mbps data conversion rate. In another approach [7], 
the modulus multiplier is optimized using temporal 
parallelism and implemented with VHDL with a data 
conversion rate of 522 Mbps with comparatively less area 
requirements. Later Leong proposed a 500 Mbps bit serial 
implementation of IDEA on Xilinx Virtex XCV300 -6 
FPGA which is followed by Goldstein’s approach with 
conversion rate of 1013 Mbps. Finally Ascom developed 
IDEACrypt Kernel with a speed of 720 Mbps [5]. Recently 
Thaduri [7] implemented IDEA cipher having a throughput 
of 700 Mb/s. 

III. THE IDEA BLOCK CIPHER 
In this section, the entire algorithm for the IDEA block 

cipher is elaborated. IDEA is a symmetric key cipher which 
was proposed by Lai and Massey [4]. The block size of data 
on which IDEA operates, is of 64 bit and the key size is of 
128 bits. But all data operations in IDEA cipher are in 16 bit 
unsigned integers. The length of the incoming data should be 
either in normal in integer multiple of 64 bits or if not, is 
made by using padding bits. At the end of the algorithm, a 64 
bit cipher text is created. 

A. Basic structure of IDEA cipher. 
 
IDEA is based on mixing operation of three different 
algebraic groups which are  

• XOR (bitwise).  

• Addition modulo . 

• Multiplication modulo ).  

The security of IDEA depends on these three operations. The 
basic structure of IDEA cipher [13] is shown in Figure 1. The 
IDEA cipher consists of 8 rounds which are identical in 
nature and a last output transformation round which is 
similar to upper half of any round. Before the starting of 1st 
round, the input 64 bit plain text is divided into four 16 bit 
sub-blocks, X1, X2, X3 and X4 respectively. At the end of 
encryption phase, four 16 bit sub-blocks of cipher text is 
created. Each round uses six 16 bit sub-key blocks Z1

 (n), Z2
 

(n), … , Z6
(n) which are made from the input 128 bit key. . The 

super-script n denotes the nth round. The output 
transformation phase, which is considered as 9th or the last 
round, uses 4 sub-keys, Z1

 (9), Z1
 (9), Z1

 (9), Z1
 (9). Every round 

except the 1st round uses the output sub-blocks produced 
from the previous round. In between every round, the 2nd and 
the 3rd sub-blocks are swapped. The entire algorithm uses 
only three different algebraic group operations which are 
XOR, addition modulo 216 and multiplication modulo (216 + 
1). 

 
 Figure 1. Basic structure of IDEA Cipher and its data flow. 

The encryption phase of IDEA thus uses [(8*6) + 4] i.e. 52 
sub-key blocks, which are made from the 128 bit input key. 
As IDEA involves only algebraic operations, no look-up 
tables or S-Boxes are used like DES or AES[ 14]. 

The decryption phase of IDEA is identical to that of the 
encryption phase. It uses the same sequence of operations as 
in the encryption phase. The only change is that the sub-keys 
are reversed and slightly different. That means the sub-keys 
which are used in round 1 during encryption phase are 
manipulated during last round of decryption phase. The 
sub-keys used in decryption are either additive or 
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multiplicative inverse of the sub-keys used in the encryption 
phase. 

B. Key Generation 
The key generation phase of IDEA generates 52 sub-keys 
from the 128 bit input key. The basic steps of generating the 
encryption keys are: 

• All the sub-keys are named as Z1
(1),….Z6

(1) ,  
Z1

(2),….Z6
(2)  , … , Z1

(8),….Z6
(8)   , Z1

(9),….Z4
(9).

  

• From the input 128 bit key, eight sub-blocks of 
16 bits are partitioned and are assigned to 
Z1

(1),….Z2
(2)    directly. 

• Now the original 128 bit key block is rotated by 
25 bits and a new 128 bit block is formed. Now 
another eight sub-blocks are generated from this 
new block. 

• The rotation procedure is repeated until and 
unless sub-blocks used in previous rounds are 
found. 

Once the encryption keys are generated, the decryption keys 
can be generated directly by taking their additive or 
multiplicative inverses as required. 

IV. DIMINISHED-1 MODULO MULTIPLIER 
Multiplication modulo a Fermat prime (p) is used as an 

important operation in many algorithms and it is crucial in 
various applications like pseudorandom number generation, 
Arithmetic processing and Cryptography. In IDEA 
algorithm, this modulo multiplier plays a very important role 
in the throughput and speed of IDEA.  More over the data 
flow path also contains several such multipliers. This needs 
an efficient design of such multiplier in hardware for FPGA 
implementation of IDEA.  
In modulo (2n + 1) multiplication, the basic operations which 
are involved are regular binary multiplication of 2 numbers 
and modulo correction. But while realizing this operation in 
hardware, an inefficient usage of area and time is involved. 
In residue number system arithmetic and in Fermat Number 
Transform (FNT), the operands are of (n+1) wide when the 
concerned modulus is (2n + 1), because the maximum value 
allowed in these types of arithmetic is 2n which is normally 
represented by n+ 1 bit. But it appears inefficient to work 
with an extra bit in case of n bit operands in weighted binary 
representation. So in order to transform the computation 
units to a bit width of n bits, a new approach is introduced 
which maps the numbers from normal weighted binary 
representation into a modified binary representation, which 
ultimately brings down the operand width to n bits. Such 
modified binary representations are regarded as 
diminished-1 number representation. Although an extra 
overhead is there in such multipliers to convert from 
weighted to diminished-1 form, it is still efficient when a 
large number of modulo multiplications and additions are 
involved in any algorithm. 

A. Basic Idea 
 
The diminished-1 representation of binary numbers was first 
proposed by Leibowitz [2], which is found to be a very 
convenient and efficient form of representation for modulo 
(2n + 1) operations on binary numbers. For normal (n + 1) bit 
representation under modulo (2n+1), the number 2n is 
expressed as -1 mod (2n+1), which requires an extra bit. To 
get rid of this, this diminished-1 representation is introduced. 
This modified binary representation is achieved by 
subtracting 1 from the normal binary representation of any 
number. Thus if A is a normal binary number and d[A] be the 
diminished-1 representation of A , then 
 

)12mod()1(][ +−= nAAd ……………………… (1) 
 
Thus when A є [1, 2n] and A ≠ 0 (an n + 1 bit number), then 
d[A] є [0; 2n - 1],which is an n bit number. However when A 
= 0, d[A] = d[0] = (0 - 1) mod (2n + 1) = (-1) mod (2n + 1) 
which is equal to 2n, an (n + 1) bit number. 
The diminished-1 arithmetic has the following operations:- 
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Where (d[A])’ is one's complement of d[A] and inCLS( x , k) 
is the k bit circular shift of x in which the circulated k bits are 
complemented. 

B. Proposed Modulo (2n + 1) Multiplication algorithm 
As the modulo multiplier is the most important module for 
the IDEA cipher, the basic goal is to speed up the modulo 
multiplication technique, which can be done in two ways: 

• To reduce the number of partial products. 
• To accelerate the addition of partial products. 

The number of partial products can be reduced by applying 
Booth’s recoding algorithm and the addition of these partial 
products can be accelerated by using Wallace trees (Carry 
Save Adder trees). Zimmerman [14][6] proposed modulo (2n 
+ 1) adders which used diminished-1 number system where 
the normal Carry Save Adders(CSA) are replaced by 
Inverted End Around Carry CSA tree for modulo (2n + 1) 
correction 
Previously, few diminished-1 modulo (2n + 1) modulo 
multipliers [12][11][14] were used in IDEA but handling of 
zero results was not considered. For some of them, a new 
combinational circuit was used for treatment of zeroes which 
was a correction term generator. But the circuit complexity 
was complex. . The multiplication approach by Zimmerman 
[14] consists of an n-bit unsigned multiplication followed by 
an n-bit modulo correction. Booth’s recoding algorithm is 



 

 

used to reduce the number of partial products. But the 
correction term is generated with substantial gate delay and 
this scheme cannot handle 2n value efficiently. The 
multiplication approach of Sousa and Chaves [10] used 
Modified Booth’s algorithm but the circuit complexity was 
very high. Moreover, for diminished-1 addition, carry 
propagate adder is used.  Efstathiou [11][15][3] proposed a 
diminished-1 multiplier but it is without Booth recoding 
algorithm. It uses an nn×  array of partial products and 
moreover there is no special treatment of zero. 
In our proposed multiplier, radix 4 booth encoding is used to 
reduce the number of partial products to n/2. In this 
multiplier, both the inputs and the result are in diminished-1 
form. Moreover the correction term generator is also very 
simple. A separate correction term is generated for each 
partial product. The partial product reduction is done by 
using an inverted end around carry (EAC) adder tree and the 
adder used is a carry save adder (CSA). A final diminished-1 
adder is used for generating the product. 
Let the multiplicand be d[A] and multiplier be d[B] where 
d[A] and d[B] are two n bit numbers. Let d[A] = 
(an-1an-1,…a1ao) and d[B] = (bn-1bn-1…b1b0).Since the product 
is also an n bit number, let the product be d[AB] = 
(pn-1pn-2pn-3…..p1p0). Now in IDEA, the operand 0 is 
represented as 2n. So in diminished-1 representation, 0 is 
treated as 2n – 1. 
As the multiplicand and the multiplier are operands of n bits 
wide, d[B] can be written as 
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In radix 4 booth encoding format (where the triplets of 
multiplier are encoded), hence d[B] can be written as 
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Now 
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So substituting the value of d[B], we get, 
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Substituting (9) in equation (5), we get, 
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Now in IDEA, the operand size(n) is of 16 bit wide. So n is 
even and equation (10) can be written as  

 

)12mod()2/]2)2([

)]21([
]2)2([(][

2
122

1
2

1
12

10

11

++−+

+−+
+−+=

+

−

=
−

+−

∑ ni
ii

n

i
i

n
nnn

nbbbAd

bbAd
bbbAdABd

 
 

)12mod()12/1]2)2([

)]21([)]2([(][

2
122

1
2

1
12

1011

+−++−+

+−++−+−=

+

−

=
−

+−

∑ ni
ii

n

i
i

nnn

nbbbAd

bbAdbbbAdABd
 

 

)12mod()12/]2)2([

)]21()2([(

2
122

1
2

1
12

1011

+−+−+

+−++−+−=

+

−

=
−

+−

∑ ni
ii

n

i
i

nnn

nbbbAd

bbAbbbAd
 

 

)12mod(])2)2([

12/)]21([(

2
122

1
2

1
12

110

+−+

+−+−−+=

+

−

=
−

−

∑ ni
ii

n

i
i

n

bbbAd

nbbbAd
 

 

)12mod(])2)2([

12/)]2([(

2
122

1
2

1
12

101

+−+

+−+−+=

+

−

=
−

−

∑ ni
ii

n

i
i

n

bbbAd

nbbbAd
                                                           

                                                                       ………………... (11) 
As this algorithm follows radix 4 recoding scheme, the 

value of the sub-expression  and 
  are elements of the set {-2, -1, 0, +1, 

+2}.When the value is zero, a separate correction term is 
introduced. Now according to Chen and Yao [1], equation 



 

 

(11) can be represented in terms of a summation expression 
containing partial products and correction terms, which can 
be written as 
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This can be further written as 
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The entire multiplication algorithm is stated in brief steps as 
follows:- 

• Convert the multiplicand (A) and the multiplier 
(B) to their corresponding diminished-1 
representation. If either of the multiplicand or the 
multiplier is zero, first the number is represented 
as 2n then represented in diminished-1 form. So 
d[0] becomes 2n – 1. 

• An extra bit is appended with the LSB of the 
multiplier such that the appended bit is 
complement of the MSB of the multiplier. The 
resultant number becomes an n+1 bit wide 
number as shown below. 
 
bn-1 bn-2 bn-3 …… ….. …. b1 b0 b’n-1 

 
• From the (n+1) bit number, the codes are formed 

as per radix 4 encoding algorithm, which gives 
n/2 partial products. The partial products are 
formed as per the algorithm proposed by Chen 
and Yao [2], which is given in Table 1. The 
corresponding correction terms are also 
calculated having zero values against non zero 
codes and non zero values for zero codes.  

 
Table 1 

Partial products and respective correction terms. 
b2i+1 b2i b2i-1 code ppi ci 

0 0 0 0 22i - 1 22i 

0 0 1 1 d[22i A] 0 
0 1 0 1 d[22i A] 0 
0 1 1 2 d[22i+1 A] 0 
1 0 0 -2 d[-22i+1 A] 0 
1 0 1 -1 d[-22i A] 0 
1 1 0 -1 d[-22iA] 0 
1 1 1 0 22i - 1 22i 

 
Here the range of i is 0 < i < K. When i = 0 then 

the corresponding triplet is )( 101 −nbbb  

 
• The K partial products, C’ and d[1] are added 

using inverted EAC CSA tree [3]. So the K+1 
term in (13) are  naturally added. The final two 
operands formed by the adder tree is added using 
diminished-1 adder to form the product (d[AB]). 
It is to be noted that no separate modulo 
reduction step is need in this algorithm. 

V. PROPOSED MULTIPLIER ARCHITECTURE 
The modulo multiplier proposed in this paper consists of a 

partial product generator, a correction term generator, an 
inverted end around carry (EAC) adder tree for reducing 
K+2 operands to a final sum and carry vector and a final 
diminished-1 modulo (2n + 1) adder.  

 
Figure 2: Proposed Multiplier Architecture 

 
 

An extra module is necessary for zero checking and 
conversion of diminished-1 to weighted form. The block 
diagram of the proposed multiplier is given in Figure .2. 

The partial product generator consists of two sub-blocks, 
(i) Booth Encoder (BE) block for generating the codes from 
the triplets and (ii) Booth Selector (BS) block for generating 
the partial products. The BE block takes three consecutive 
bits of the multiplier as inputs and provides the 
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corresponding code as per radix 4 booth recoding scheme. 
The BS block takes the code and the multiplicand as the 
input and produces the corresponding partial product. The 
correction term generator generates a vector C’ which is of 
the form 

(…..x’i+11x’i1……1x’11x’0)2 

 
The EAC adder tree consists of Carry Save Adders 

(CSAs) which is constructed using Full Adders (FA). 
The modulo (2n + 1) multiplier proposed in this paper 
follows a similar structure as that of Chen and Yao [1]. The 
difference is that, as in IDEA, the operand zero is treated as 
2n, the zero checking using nth bit of the multiplicand and the 
multiplier is not required. When a zero value is encountered, 
before converting it to diminished-1 form i.e (-1) mod (2n + 
1), it is treated as 2n i.e. d[0]=d[2n]= 2n -1. 

VI. PERFORMANCE AND OBSERVATION 
This new modulo multiplication technique is quite efficient 
in the sense that it reduces the number of partial products and 
there is no separate modulo reduction phase. The only 
overhead is the delay in producing the partial products and 
correction term and the delay in the adder tree. The delay in 
adder tree depends on the depth of the tree which is fixed for 
a given n. So the delay in the partial product generator is also 
fixed for a given n. 
The performance estimation is done qualitatively using unit 
gate model. According to this model, all 2 input monotonic 
gates count is considered as one gate delay and all 2 input 
XOR/XNOR gate count as 2 gate delays, the entire delay van 
be calculated as: 
 
Time delay for a CSA is the time delay of the Full Adder * 
depth of the (K + 2) operand adder tree. As the last operand 
is zero (d[1]), the last full adder can be replaced by a half 
adder. 
 
CSA (time) = FA (time) * h (K +1) + HA (time). 
 
Where h(X) is the height of the adder tree of X number of 
operands. 
Now according to Efstathiou [11, 15], the delay in the final 

diminished-1 modulo adder is given by   3log2 +n
  

Here the value of n is (4, 6, 10, 16, 24, 36, etc) 

 
So the total delay is 

PPG (time) + CSA (time) +   3log2 +n  
=Constant value + FA (time) * h (K +1) + HA (time) + 

  3log2 +n  
The delay is a Full Adder as per the unit gate model is 4. A 
tabular comparison of delay of existing schemes with other 
schemes are as follows: 
 

Table 2: Comparison with other diminished-1 schemes 
 

Multiplier Delay 
Proposed multiplier Constant(C0) + 4* h(n/2 + 1) 

+ 2log2n 
Zimmermann [14] C2 + 4* h(n/2 + 1) + 2log2n 
Souse,chaves[10] C1 + 4* h(n/2 + 1) + 2log2n 
Efstathiou[11] C4 + h(n + 3) + 2log2n 
 
In this context, the values of C0, C1, C2, and C4 are constant 
delays of the partial product generator (PPG), in various 
schemes. However the delay in PPG depends on the number 
of partial products and the depth of the Adder Tree used. 
The needful results are given in table 3. The design is 
synthesized using VHDL code, and then it is realized in 
Virtex II Pro –XC2VP30 -7. 
 

Table 3: Synthesis Report 
 

Device used Virtex II Pro – XC2VP30 
Language VHDL 
Input size (n=16) Delay  3.293 ns 
Total Gate Delay 4.883 ns 
System Clock Frequency 100 MHz 
 
Although the comparisons are made in terms of time delay, 
the area requirements are now not taken into account. 
Moreover, the conversion delay from weighted form to 
diminished-1 form is also not considered. The proposed 
design is incorporated in IDEA cryptosystem in order to 
speed up the multiplication process. 

VII. CONCLUSION 
This newly proposed multiplier is efficient when it is used 

many times in a single algorithm. As is uses a pure radix 4 
booth recoding, the computation is faster. To make the 
design more efficient, a pipelining approach may be 
incorporated to reduce time delay but it will increase the area 
requirements. This new multiplier when used in IDEA, 
reduces the time delay and increases the data throughput 
rate. In all the computations, the conversion cost in hardware 
and delay from weighted normal form to diminished-1 form 
has not been considered for simplicity. The delay may vary 
according to the platform i.e. for ASICs the delay will be less 
compared to FPGAs. 
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