

Keywords—Diminished-1 representation, IDEA cipher,
Hardware Implementations, Modulo Multiplier, Partial Products.

Abstract— This paper covers the FPGA implementation

of the International Data Encryption Algorithm (IDEA)
using Very Large Scale Integrated Circuits Hardware
Description Language (VHDL) with device as Vertex II Pro
XC2VP30 using Xilinx – ISE 10.1. IDEA is very much fast
and entirely based on internal group operations-XOR,
modulo addition and modulo multiplication. So unlike other
symmetric key block ciphers like AES or DES, there is no
need for S-Boxes or P-Boxes in round operations. To use an
encryption algorithm in real time applications like Cable TV,
Video conferencing, the speed i.e. the data throughput rate
needs to be high. The multiplication modulo (2n + 1) is the
main module of this IDEA block cipher, as this module is
highly computation intensive and consumes a lot of time.
Due to regularity of IDEA, it has been implemented in
hardware several times using different architectures. This
paper mainly focuses on implementing a new algorithm and
architecture for modulo (2n + 1) multiplication which takes
the input in a diminished-1 form [2] and produces the
product in the same form. This is a new modulo (2n + 1)
approach for implementing IDEA in hardware. The
proposed multiplier optimizes the time by producing n/2
partial products and handles zero values very efficiently. The
performance of the proposed multiplier is analyzed in terms
of time delay and circuit complexity and is compared with
some existing schemes of diminished-1 modulo multipliers
like Zimmerman [15], Sousa and Chaves [10] and Efstathiou
[15][3].

I. INTRODUCTION
Cryptography is the art of keeping data secure from

unauthorized access so as to ensure that only the intended
users can access it. As computer technologies are getting
advanced, more and more cryptographic applications are
used in day-to-ay life. They are mainly used to support other
applications which are very much sensitive to data security
such as smart cards and commercial data exchange over a
network. Not only for personal use but cryptographic
algorithms are also very important in every aspect of
professional activities. A cryptographic algorithm generally
consists of some specialized arithmetic computations which

.

are complicated in terms of time complexity. It is because of
the fact that these algorithms work with large amount of data
either in blocks or simply in streams. Although a single
traditional CPU is enough for performing these
computations, but for a machine which works as a server in a
huge network gets millions of client requests for performing
cryptographic operations for them individually. This makes
the workload huge. The computational resources may also
be limited for example in smartcards, mobile phones,
handheld computers, etc. Moreover if the associated network
is of high speed, the speed of the necessary cryptographic
computations also needs to be taken into account. For
example in transmitting audio and video data for cable TV,
pay TV, video conferencing and sensitive financial and
commercial data, the speed of the cryptographic module to
be embedded ,needs to be very high. Moreover for security
related issues in wireless and sensor networks, there is a need
for separate hardware device with very high processing rate
because of limited battery of the nodes and for optimizing
the bandwidth efficiency. So from the viewpoint of high
speed and throughput, traditional software implementations
of these complicated cryptographic algorithms are not
efficient in real time applications like ATM, VPN, etc. This
forces the system designers to go for hardware
implementation of the cryptosystems [8]. Traditionally
hardware implementations are based on ASIC technology,
but they are not quite affordable every time especially in
monetary terms. Moreover these ASICs are not adaptable to
new changes once the hardware is built. The more efficient
and convenient method is to use FPGA platforms [5] which
provides sufficient logics and storage elements on which any
complex algorithm can be implemented. They are adaptable
to new changes and their granularity matches quite well with
the cryptographic algorithms.

In this paper, the cipher used is a symmetric key block
cipher named IDEA. It takes its input as 64 bit plain text and
gives a 64 bit cipher text as output using a 128 bit key. While
working on plain text, it divides the input data into 16 bit
sub-blocks and operates on each block. It is described as one
of the most secure block algorithm due to its high immunity
to attacks.
In this paper, we have discussed about hardware
implementation of IDEA block cipher using VHDL. The
main objective here is to design an efficient and fast modulo
multiplier which is to be used in the entire IDEA algorithm.
The organization of the rest of the paper is as follows. The
previous hardware and software implementations are

A novel modulo (2n + 1) multiplication approach
for IDEA cipher

Sourav Mukherjee and Bibhudutta Sahoo

covered in section II. Section III describes the IDEA cipher
and its detailed operations as well as modules. Section IV
describes basic idea of diminished-1 representation and the
algorithm for proposed modulo (2n+1) multiplication. In
Section V, the architecture of the proposed multiplier is
described. Section VI describes the performance reviews and
comparisons with previous schemes and finally section VII
concludes the paper.

II. PREVIOUS WORK
In spite of the fact that IDEA works with 16 bit word blocks,
software implemented IDEA cannot reach the speed that is
required for online encryption in high speed networks. IDEA
was implemented in software by Ascom, the patent holder of
IDEA, and it achieved an encryption rate of 23.53 Mbps.
Helger [16] proposed an approach using the Intel Pentium II
233MHz machine and achieved an encryption rate of 32.9
Mbps. Mencer [18] proposed a design of IDEA processor
which achieved 528 Mbps on 4 XC4020XL devices. The
first VLSI implementation of IDEA was developed and
verified by Bonnenberg [17] using a CMOS technology with
an encryption rate of 44 Mbps. With a system clock
frequency of 25 MHz, Curiger et al. performed 177 Mbps
VLSI implementation of IDEA [4]. Wolter reported a 355
Mbps VLSI implementation [9] in 1995. This is followed by
Salomao’s approach of single round implementation on chip
with 424 Mbps data conversion rate. In another approach [7],
the modulus multiplier is optimized using temporal
parallelism and implemented with VHDL with a data
conversion rate of 522 Mbps with comparatively less area
requirements. Later Leong proposed a 500 Mbps bit serial
implementation of IDEA on Xilinx Virtex XCV300 -6
FPGA which is followed by Goldstein’s approach with
conversion rate of 1013 Mbps. Finally Ascom developed
IDEACrypt Kernel with a speed of 720 Mbps [5]. Recently
Thaduri [7] implemented IDEA cipher having a throughput
of 700 Mb/s.

III. THE IDEA BLOCK CIPHER
In this section, the entire algorithm for the IDEA block

cipher is elaborated. IDEA is a symmetric key cipher which
was proposed by Lai and Massey [4]. The block size of data
on which IDEA operates, is of 64 bit and the key size is of
128 bits. But all data operations in IDEA cipher are in 16 bit
unsigned integers. The length of the incoming data should be
either in normal in integer multiple of 64 bits or if not, is
made by using padding bits. At the end of the algorithm, a 64
bit cipher text is created.

A. Basic structure of IDEA cipher.

IDEA is based on mixing operation of three different
algebraic groups which are

• XOR (bitwise).

• Addition modulo .

• Multiplication modulo).

The security of IDEA depends on these three operations. The
basic structure of IDEA cipher [13] is shown in Figure 1. The
IDEA cipher consists of 8 rounds which are identical in
nature and a last output transformation round which is
similar to upper half of any round. Before the starting of 1st
round, the input 64 bit plain text is divided into four 16 bit
sub-blocks, X1, X2, X3 and X4 respectively. At the end of
encryption phase, four 16 bit sub-blocks of cipher text is
created. Each round uses six 16 bit sub-key blocks Z1

 (n), Z2

(n), … , Z6
(n) which are made from the input 128 bit key. . The

super-script n denotes the nth round. The output
transformation phase, which is considered as 9th or the last
round, uses 4 sub-keys, Z1

 (9), Z1
 (9), Z1

 (9), Z1
 (9). Every round

except the 1st round uses the output sub-blocks produced
from the previous round. In between every round, the 2nd and
the 3rd sub-blocks are swapped. The entire algorithm uses
only three different algebraic group operations which are
XOR, addition modulo 216 and multiplication modulo (216 +
1).

 Figure 1. Basic structure of IDEA Cipher and its data flow.

The encryption phase of IDEA thus uses [(8*6) + 4] i.e. 52
sub-key blocks, which are made from the 128 bit input key.
As IDEA involves only algebraic operations, no look-up
tables or S-Boxes are used like DES or AES[14].

The decryption phase of IDEA is identical to that of the
encryption phase. It uses the same sequence of operations as
in the encryption phase. The only change is that the sub-keys
are reversed and slightly different. That means the sub-keys
which are used in round 1 during encryption phase are
manipulated during last round of decryption phase. The
sub-keys used in decryption are either additive or

X1 X3 X4X2

Z1
(1)

Z2
(1) Z3

(1) Z4
(1)

 Z5
(1)

Z6
(1)

SEVEN MORE
SIMILAR ROUNDS

OUTPUT
TRANSFORMATION

C1 C2 C4C3

 BITWISE XOR

 16 BIT INTEGER ADDITION MODULO
216

16 BIT INTEGER MULTIPLICATION
MODULO (216 + 1)

Z1
(9) Z2

(9) Z3
(9) Z4

(9)

ROUND 1

multiplicative inverse of the sub-keys used in the encryption
phase.

B. Key Generation
The key generation phase of IDEA generates 52 sub-keys
from the 128 bit input key. The basic steps of generating the
encryption keys are:

• All the sub-keys are named as Z1
(1),….Z6

(1) ,
Z1

(2),….Z6
(2) , … , Z1

(8),….Z6
(8) , Z1

(9),….Z4
(9).

• From the input 128 bit key, eight sub-blocks of
16 bits are partitioned and are assigned to
Z1

(1),….Z2
(2) directly.

• Now the original 128 bit key block is rotated by
25 bits and a new 128 bit block is formed. Now
another eight sub-blocks are generated from this
new block.

• The rotation procedure is repeated until and
unless sub-blocks used in previous rounds are
found.

Once the encryption keys are generated, the decryption keys
can be generated directly by taking their additive or
multiplicative inverses as required.

IV. DIMINISHED-1 MODULO MULTIPLIER
Multiplication modulo a Fermat prime (p) is used as an

important operation in many algorithms and it is crucial in
various applications like pseudorandom number generation,
Arithmetic processing and Cryptography. In IDEA
algorithm, this modulo multiplier plays a very important role
in the throughput and speed of IDEA. More over the data
flow path also contains several such multipliers. This needs
an efficient design of such multiplier in hardware for FPGA
implementation of IDEA.
In modulo (2n + 1) multiplication, the basic operations which
are involved are regular binary multiplication of 2 numbers
and modulo correction. But while realizing this operation in
hardware, an inefficient usage of area and time is involved.
In residue number system arithmetic and in Fermat Number
Transform (FNT), the operands are of (n+1) wide when the
concerned modulus is (2n + 1), because the maximum value
allowed in these types of arithmetic is 2n which is normally
represented by n+ 1 bit. But it appears inefficient to work
with an extra bit in case of n bit operands in weighted binary
representation. So in order to transform the computation
units to a bit width of n bits, a new approach is introduced
which maps the numbers from normal weighted binary
representation into a modified binary representation, which
ultimately brings down the operand width to n bits. Such
modified binary representations are regarded as
diminished-1 number representation. Although an extra
overhead is there in such multipliers to convert from
weighted to diminished-1 form, it is still efficient when a
large number of modulo multiplications and additions are
involved in any algorithm.

A. Basic Idea

The diminished-1 representation of binary numbers was first
proposed by Leibowitz [2], which is found to be a very
convenient and efficient form of representation for modulo
(2n + 1) operations on binary numbers. For normal (n + 1) bit
representation under modulo (2n+1), the number 2n is
expressed as -1 mod (2n+1), which requires an extra bit. To
get rid of this, this diminished-1 representation is introduced.
This modified binary representation is achieved by
subtracting 1 from the normal binary representation of any
number. Thus if A is a normal binary number and d[A] be the
diminished-1 representation of A , then

)12mod()1(][+−= nAAd ……………………… (1)

Thus when A є [1, 2n] and A ≠ 0 (an n + 1 bit number), then
d[A] є [0; 2n - 1],which is an n bit number. However when A
= 0, d[A] = d[0] = (0 - 1) mod (2n + 1) = (-1) mod (2n + 1)
which is equal to 2n, an (n + 1) bit number.
The diminished-1 arithmetic has the following operations:-

][][AdAd =− ……………………………………. (2)
)12mod()1][][(][+++=+ nBdAdBAd ……………….... (3)

)12mod()1][][(][+++=− nBdAdBAd ……………. (4)

)12mod()1][(
)12mod(])[][][][(][

+−+×=

+++×=
n

n

BBAd
BdAdBdAdABd

 ………………… (5)
)],[(]2[kAdinCLSAd k = ………………………..… (6)
),][(]2[kAdinCLSAd k = ………………………… (7)

Where (d[A])’ is one's complement of d[A] and inCLS(x , k)
is the k bit circular shift of x in which the circulated k bits are
complemented.

B. Proposed Modulo (2n + 1) Multiplication algorithm
As the modulo multiplier is the most important module for
the IDEA cipher, the basic goal is to speed up the modulo
multiplication technique, which can be done in two ways:

• To reduce the number of partial products.
• To accelerate the addition of partial products.

The number of partial products can be reduced by applying
Booth’s recoding algorithm and the addition of these partial
products can be accelerated by using Wallace trees (Carry
Save Adder trees). Zimmerman [14][6] proposed modulo (2n
+ 1) adders which used diminished-1 number system where
the normal Carry Save Adders(CSA) are replaced by
Inverted End Around Carry CSA tree for modulo (2n + 1)
correction
Previously, few diminished-1 modulo (2n + 1) modulo
multipliers [12][11][14] were used in IDEA but handling of
zero results was not considered. For some of them, a new
combinational circuit was used for treatment of zeroes which
was a correction term generator. But the circuit complexity
was complex. . The multiplication approach by Zimmerman
[14] consists of an n-bit unsigned multiplication followed by
an n-bit modulo correction. Booth’s recoding algorithm is

used to reduce the number of partial products. But the
correction term is generated with substantial gate delay and
this scheme cannot handle 2n value efficiently. The
multiplication approach of Sousa and Chaves [10] used
Modified Booth’s algorithm but the circuit complexity was
very high. Moreover, for diminished-1 addition, carry
propagate adder is used. Efstathiou [11][15][3] proposed a
diminished-1 multiplier but it is without Booth recoding
algorithm. It uses an nn× array of partial products and
moreover there is no special treatment of zero.
In our proposed multiplier, radix 4 booth encoding is used to
reduce the number of partial products to n/2. In this
multiplier, both the inputs and the result are in diminished-1
form. Moreover the correction term generator is also very
simple. A separate correction term is generated for each
partial product. The partial product reduction is done by
using an inverted end around carry (EAC) adder tree and the
adder used is a carry save adder (CSA). A final diminished-1
adder is used for generating the product.
Let the multiplicand be d[A] and multiplier be d[B] where
d[A] and d[B] are two n bit numbers. Let d[A] =
(an-1an-1,…a1ao) and d[B] = (bn-1bn-1…b1b0).Since the product
is also an n bit number, let the product be d[AB] =
(pn-1pn-2pn-3…..p1p0). Now in IDEA, the operand 0 is
represented as 2n. So in diminished-1 representation, 0 is
treated as 2n – 1.
As the multiplicand and the multiplier are operands of n bits
wide, d[B] can be written as

)12mod()2(][
1

0
+= ∑

−

=

ni
n

i
ibBd

In radix 4 booth encoding format (where the triplets of
multiplier are encoded), hence d[B] can be written as

 
)12mod()2)2()2((][2

122

2/

1
1210 +−++−= +

=
−∑ ni

ii

n

i
i bbbbbBd

 …………………….. (8)
Now

)12mod()1][(++= nBdB

So substituting the value of d[B], we get,

 
)12mod()2)2()21((2

122

2/

1
1210 +−++−+= +

=
−∑ ni

ii

n

i
i bbbbbB

 …….. (9)
Substituting (9) in equation (5), we get,

 

 
)12mod()1)21(2)2(

2)2(][)21(][(][

10
2

122

2/

1
12

2
122

2/

1
1210

+−−++−++

−+×+−+×=

+
=

−

+
=

−

∑

∑

ni
ii

n

i
i

i
ii

n

i
i

bbbbb

bbbAdbbAdABd

 

)12mod()2)2(

2)2(][

1)21()21(][(

2
12212

2
122

2/

1
12

1010

+−+

+−+×+

−−++−+×=

+−

+
=

−∑
ni

iii

i
ii

n

i
i

bbb

bbbAd

bbbbAd

 

)12mod()2)2(

2)2(][

)]21([(

2
12212

2
122

2/

1
12

10

+−+

+−+×+

−+=

+−

+
=

−∑
ni

iii

i
ii

n

i
i

bbb

bbbAd

bbAd

 
)12mod())1)]2)2([(

)]21([(

2
122

2/

1
12

10

++−++

−+=

+
=

−∑ ni
ii

n

i
i bbbAd

bbAd

 

 )12mod()2/)]2)2([(

)]21([(

2
122

2/

1
12

10

++−++

−+=

+
=

−∑ ni
ii

n

i
i nbbbAd

bbAd

 ………………. (10)

Now in IDEA, the operand size(n) is of 16 bit wide. So n is
even and equation (10) can be written as

)12mod()2/]2)2([

)]21([
]2)2([(][

2
122

1
2

1
12

10

11

++−+

+−+
+−+=

+

−

=
−

+−

∑ ni
ii

n

i
i

n
nnn

nbbbAd

bbAd
bbbAdABd

)12mod()12/1]2)2([

)]21([)]2([(][

2
122

1
2

1
12

1011

+−++−+

+−++−+−=

+

−

=
−

+−

∑ ni
ii

n

i
i

nnn

nbbbAd

bbAdbbbAdABd

)12mod()12/]2)2([

)]21()2([(

2
122

1
2

1
12

1011

+−+−+

+−++−+−=

+

−

=
−

+−

∑ ni
ii

n

i
i

nnn

nbbbAd

bbAbbbAd

)12mod(])2)2([

12/)]21([(

2
122

1
2

1
12

110

+−+

+−+−−+=

+

−

=
−

−

∑ ni
ii

n

i
i

n

bbbAd

nbbbAd

)12mod(])2)2([

12/)]2([(

2
122

1
2

1
12

101

+−+

+−+−+=

+

−

=
−

−

∑ ni
ii

n

i
i

n

bbbAd

nbbbAd

 ………………... (11)
As this algorithm follows radix 4 recoding scheme, the

value of the sub-expression and
 are elements of the set {-2, -1, 0, +1,

+2}.When the value is zero, a separate correction term is
introduced. Now according to Chen and Yao [1], equation

(11) can be represented in terms of a summation expression
containing partial products and correction terms, which can
be written as

)12mod()1
2

(][
1

2

0

1
2

0
+−+−= ∑∑

−

=

−

=

n

n

i
i

n

i
i

ncductpartialproABd

 ……………….. (12)
This can be further written as

)12mod()1(][
1

0

1

0
+−+−= ∑∑

−

=

−

=

n
K

i
i

K

i
i KcductpartialproABd

)12mod()1(
1

0
+−+−= ∑

−

=

n
K

i
i KCductpartialpro

)12mod()12(
1

0
+−+++= ∑

−

=

n
K

i
i KCductpartialpro

)12mod()1]1[(
1

0
+++++= ∑

−

=

n
K

i
i KdCductpartialpro

 …………….. (13)
Where

∑
−

=

=

=

1

0

2
K

i
icC

nK

The entire multiplication algorithm is stated in brief steps as
follows:-

• Convert the multiplicand (A) and the multiplier
(B) to their corresponding diminished-1
representation. If either of the multiplicand or the
multiplier is zero, first the number is represented
as 2n then represented in diminished-1 form. So
d[0] becomes 2n – 1.

• An extra bit is appended with the LSB of the
multiplier such that the appended bit is
complement of the MSB of the multiplier. The
resultant number becomes an n+1 bit wide
number as shown below.

bn-1 bn-2 bn-3 …… ….. …. b1 b0 b’n-1

• From the (n+1) bit number, the codes are formed

as per radix 4 encoding algorithm, which gives
n/2 partial products. The partial products are
formed as per the algorithm proposed by Chen
and Yao [2], which is given in Table 1. The
corresponding correction terms are also
calculated having zero values against non zero
codes and non zero values for zero codes.

Table 1

Partial products and respective correction terms.
b2i+1 b2i b2i-1 code ppi ci

0 0 0 0 22i - 1 22i

0 0 1 1 d[22i A] 0
0 1 0 1 d[22i A] 0
0 1 1 2 d[22i+1 A] 0
1 0 0 -2 d[-22i+1 A] 0
1 0 1 -1 d[-22i A] 0
1 1 0 -1 d[-22iA] 0
1 1 1 0 22i - 1 22i

Here the range of i is 0 < i < K. When i = 0 then

the corresponding triplet is)(101 −nbbb

• The K partial products, C’ and d[1] are added

using inverted EAC CSA tree [3]. So the K+1
term in (13) are naturally added. The final two
operands formed by the adder tree is added using
diminished-1 adder to form the product (d[AB]).
It is to be noted that no separate modulo
reduction step is need in this algorithm.

V. PROPOSED MULTIPLIER ARCHITECTURE
The modulo multiplier proposed in this paper consists of a

partial product generator, a correction term generator, an
inverted end around carry (EAC) adder tree for reducing
K+2 operands to a final sum and carry vector and a final
diminished-1 modulo (2n + 1) adder.

Figure 2: Proposed Multiplier Architecture

An extra module is necessary for zero checking and
conversion of diminished-1 to weighted form. The block
diagram of the proposed multiplier is given in Figure .2.

The partial product generator consists of two sub-blocks,
(i) Booth Encoder (BE) block for generating the codes from
the triplets and (ii) Booth Selector (BS) block for generating
the partial products. The BE block takes three consecutive
bits of the multiplier as inputs and provides the

EAC CSA1

EAC CSA2

EAC CSAi

EAC CSA

EAC CSA

DIMINISHED 1 MODULO (2n + 1)

PP4
PPi

C’

d[1]

PP1 PP2 PP3

SUM

corresponding code as per radix 4 booth recoding scheme.
The BS block takes the code and the multiplicand as the
input and produces the corresponding partial product. The
correction term generator generates a vector C’ which is of
the form

(…..x’i+11x’i1……1x’11x’0)2

The EAC adder tree consists of Carry Save Adders

(CSAs) which is constructed using Full Adders (FA).
The modulo (2n + 1) multiplier proposed in this paper
follows a similar structure as that of Chen and Yao [1]. The
difference is that, as in IDEA, the operand zero is treated as
2n, the zero checking using nth bit of the multiplicand and the
multiplier is not required. When a zero value is encountered,
before converting it to diminished-1 form i.e (-1) mod (2n +
1), it is treated as 2n i.e. d[0]=d[2n]= 2n -1.

VI. PERFORMANCE AND OBSERVATION
This new modulo multiplication technique is quite efficient
in the sense that it reduces the number of partial products and
there is no separate modulo reduction phase. The only
overhead is the delay in producing the partial products and
correction term and the delay in the adder tree. The delay in
adder tree depends on the depth of the tree which is fixed for
a given n. So the delay in the partial product generator is also
fixed for a given n.
The performance estimation is done qualitatively using unit
gate model. According to this model, all 2 input monotonic
gates count is considered as one gate delay and all 2 input
XOR/XNOR gate count as 2 gate delays, the entire delay van
be calculated as:

Time delay for a CSA is the time delay of the Full Adder *
depth of the (K + 2) operand adder tree. As the last operand
is zero (d[1]), the last full adder can be replaced by a half
adder.

CSA (time) = FA (time) * h (K +1) + HA (time).

Where h(X) is the height of the adder tree of X number of
operands.
Now according to Efstathiou [11, 15], the delay in the final

diminished-1 modulo adder is given by   3log2 +n

Here the value of n is (4, 6, 10, 16, 24, 36, etc)

So the total delay is

PPG (time) + CSA (time) +   3log2 +n
=Constant value + FA (time) * h (K +1) + HA (time) +

  3log2 +n
The delay is a Full Adder as per the unit gate model is 4. A
tabular comparison of delay of existing schemes with other
schemes are as follows:

Table 2: Comparison with other diminished-1 schemes

Multiplier Delay
Proposed multiplier Constant(C0) + 4* h(n/2 + 1)

+ 2log2n
Zimmermann [14] C2 + 4* h(n/2 + 1) + 2log2n
Souse,chaves[10] C1 + 4* h(n/2 + 1) + 2log2n
Efstathiou[11] C4 + h(n + 3) + 2log2n

In this context, the values of C0, C1, C2, and C4 are constant
delays of the partial product generator (PPG), in various
schemes. However the delay in PPG depends on the number
of partial products and the depth of the Adder Tree used.
The needful results are given in table 3. The design is
synthesized using VHDL code, and then it is realized in
Virtex II Pro –XC2VP30 -7.

Table 3: Synthesis Report

Device used Virtex II Pro – XC2VP30
Language VHDL
Input size (n=16) Delay 3.293 ns
Total Gate Delay 4.883 ns
System Clock Frequency 100 MHz

Although the comparisons are made in terms of time delay,
the area requirements are now not taken into account.
Moreover, the conversion delay from weighted form to
diminished-1 form is also not considered. The proposed
design is incorporated in IDEA cryptosystem in order to
speed up the multiplication process.

VII. CONCLUSION
This newly proposed multiplier is efficient when it is used

many times in a single algorithm. As is uses a pure radix 4
booth recoding, the computation is faster. To make the
design more efficient, a pipelining approach may be
incorporated to reduce time delay but it will increase the area
requirements. This new multiplier when used in IDEA,
reduces the time delay and increases the data throughput
rate. In all the computations, the conversion cost in hardware
and delay from weighted normal form to diminished-1 form
has not been considered for simplicity. The delay may vary
according to the platform i.e. for ASICs the delay will be less
compared to FPGAs.

ACKNOWLEDGMENT
The authors are thankful for the support provided by VLSI
Laboratory developed as part of Special Manpower
development programme in VLSI by The Ministry of
Communication and Information Technology Govt. of India
at ECE Department, NIT Rourkela.

REFERENCES
[1] J.W. Chen and R.H. Yao. Efficient modulo 2n + 1 multipliers for

diminished-1 representation. Circuits, Devices Systems, IET, 4(4):291
-300, jul. 2010.

[2] L. Leibowitz. A simplified binary arithmetic for the fermat number
transform, Acoustics, Speech and Signal Processing, IEEE
Transactions on, 24(5):356 - 359,oct. 1976.

[3] H. T. Vergos, D. Bakalis, and C. Efstathiou. Fast modulo 2n+1
multi-operand adders and residue generators. Integr. VLSI J.,
43(1):42- 48, 2010.

[4] X.Lai and J.L Massey “A Proposal for a New Block Encryption
Standard,” in advances in Cryptology – EUROCRYPT
90,Berlia,Germany: Springer Verlag pp. 389-404, 1990.

[5] Tsoi Kuen Hung,Leong,” Cryptographic Primitives on
Reconfigurable Platforms”, PhD thesis,The Chinese University of
Hong Kong,2002.

[6] R.Zimmermann,A.Curiger,H.Bonnenberg,H.Kaeslin,N.Felher,W.Fitc
hner,”A 177 Mb/s VLSI Implementation of the International Data
Encryption Algorithm”, IEEE Journal of Solid State
Circuit,vol.29,110.3,pp.303-307,March 1994.

[7] Thaduri,M.,Yoo,S. and Gaede,R, “ An Efficient Implementation of
IDEA encryption algorithm using VHDL”, ©2004 Elsevier.

[8] P. Kitsos *, N. Sklavos, M.D. Galanis, O. Koufopavlou , “64 Bit Block
ciphers: Hardware Implementations and Comparison
analysis”,593-604,3rd November,2004,Elsevier.

[9] Stefan Wolter,Hogler Matz,Andreas Schubert and Ruiner Laur, “ On
the VLSI Implementation of International Data Encryption
Algorithm.”, © IEEE 1995.

[10] Sousa L , Chaves R : ‘ A universal architecture for designing efficient
modulo 2n + 1 multipliers’ , IEEE Trans. Circuits Syst. I., 2005, 52,
(6), pp. 1166-1178.

[11] Efstathiou C, Vergos H.T. ,Dimitrakopoulos G., Nikolos D, :
‘Efficient diminished-1 modulo 2n + 1 multipliers ’, IEEE Trans.
Comput., 2005, 54,(4), pp. 491-496.

[12] Curiger,Bonnenberg and Kaeslin,H., “Regular VLSI Architecture for
Multiplication Modulo (2n + 1).”,IEEE Journal of Solid State
Circuits,vol.27,NO. 7,July 1991,pp 990-994.

[13] Bruce Schneier,”Applied Cryptography”, 2nd Edition,Wiley
publications.

[14] Zimmermann, R.; , "Efficient VLSI implementation of modulo (2n±1)
addition and multiplication," Computer Arithmetic, 1999.
Proceedings. 14th IEEE Symposium on , vol., no., pp.158-167, 1999
doi: 10.1109/ARITH.1999.762841

[15] Efstathiou, C.; Voyiatzis, I.; , "Handling zero in diminished-1 modulo
2n + 1 subtraction," Signals, Circuits and Systems (SCS), 2009 3rd
International Conference on , vol., no., pp.1-6, 6-8 Nov. 2009
doi: 10.1109/ICSCS.2009.5414182.

[16] Helger Lipmaa. Idea: A cipher for multimedia architectures, In
Selected Areas in Cryptography 98, pages 248{263. Springer-Verlag,
1998.

[17] H. Bonnenberg, Andreas Curiger, Norbert Felber, Hubert Kaeslin,
and Xuejia Lai. Vlsi implementation of a new block cipher. In
Proceedings of the 1991 IEEE International Conference on Computer
Design on VLSI in Computer & Processors, ICCD ’91, pages
510–513, Washington, DC, USA, 1991. IEEE Computer Society.

[18] O. Mencer, M. Morf, and M.J. Flynn. Hardware software tri-design of
encryption for mobile communication units. In Acoustics, Speech and
Signal Processing, 1998. Proceedings of the 1998 IEEE International
Conference on, volume 5, pages 3045 –3048 vol.5, May 1998.

Sourav Mukherjee received the B.Tech. degree in
Computer Science and Engineering from West Bengal University of
Technology, Kolkata, India in 2008. He is currently pursuing the M.Tech. in
Computer Science from National Institute of Technology, Rourkela, India.
His current research interests include FPGA Implementation of
cryptosystem and Information security

 Bibhudatta Sahoo received the M.Sc. Engineering in
Computer Science from National Institute of Technology Rourkela, INDIA,
in 1999. He is currently an assistant professor in the Department of
Computer Sc. & Engineering, NIT Rourkela, India. His interest include
Parallel & Distributed Systems, Networking, Computational Machines,
System Software, High performance Computing, VLSI algorithms He is a
member of the IEEE Computer Society & ACM.

	I. INTRODUCTION
	II. Previous work
	III. The idea block cipher
	A. Basic structure of IDEA cipher.
	B. Key Generation

	IV. Diminished-1 Modulo Multiplier
	A. Basic Idea
	B. Proposed Modulo (2n + 1) Multiplication algorithm

	V. Proposed multiplier architecture
	VI. Performance and observation
	VII. Conclusion

