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Abstract—Wireless sensor networks (WSN) have been pro-
posed as a solution to environment sensing, target tracking,
data collection and others. WSN collect an enormous amount
of data over space and time. The objective is to estimate of
a parameter or function from these data. Learning is used in
detection and estimation problems when no probablistic model
relating an observation. This paper investigates a general class of
distributed algorithms for data processing, eliminating the need
to transmit raw data to a central processor. This can provide
significant reductions in the amount of communication and
energy required to obtain an accurate estimate. The estimation
problems we consider are expressed as the optimization of a
cost function involving data from all sensor nodes. Here the
distributed algorithm is based on an incremental optimization
process. A parameter estimate is circulated through the network,
and along the way each node makes a small adjustment to the
estimate based on its local data.

I. I NTRODUCTION

In wireless sensor networks(WSN) comprising the nodes are
employed to collect data like local temperature, wind speed,
humidity, or concentration of some materials etc over a geo-
graphic area and are envisioned to make a dramatic impact on a
number of applications such as, precision agriculture, disaster
relief management, radar, and acoustic source localization. In
these applications, each node with its computational power,
able to send data to a subset of the network nodes, and tries
to estimate the parameter of interest [1], [2]. Therefore, there
is a great deal of effort to devising algorithms that are able
improve the estimate of the parameters of interest in every
node with information exchange between nodes [4], [5]. More
precisely, in mathematical terms, each node optimizes a cost
function that depends on all information in the network. Since
DWSN can be be deployed in almost any kind of terrain with
a hostile environment, it is preferred over traditional wired
network.

In a DWSN architecture, the system performs estimation,
detection, classification, localization and tracking tasks etc.
In a traditional centralized solution, nodes in the network
collect data and transmit them to a central processor for further
processing. The central processor estimates the parameter
vector using received data and the result is broadcasted back to

individual nodes. This mode of operation requires a powerful
central processor and large amount of communication between
sensor nodes and the central processor. In addition, a central-
ized solution limits the ability of the nodes to adapt in real
time. Therefore, distributed signal processing and optimization
are highly desired, especially in large-scale WSN systems [3].

Several methods for estimation problems are proposed in
the literature which exploit the physical behavior of the event
being measured. The most important characteristic of any
event is the correlation between the measurements at different
nodes. Recently, several distributed optimization algorithms
based on gradient search have been proposed. Due to the large
amount of complexity in assuring convergence of distributed
gradient search algorithms, the objective function is assumed
to be additive and convex.

Distributed signal processing deals with the extraction of
information from local data collected at nodes that are dis-
tributed over a geographical area. Each node in a network
records noisy observations related to the parameter to be
estimated. The nodes would then interact with their neighbors
in a certain manner, according to the network topology, either
in an incremental [4], [7]–[9] or by diffusion [5] approach.
A network is more efficient if it requires less communication
between nodes to estimate the parameter vector [1], [2].

A. Distributed Optimization Techniques

Distributed wireless sensor networks are characterised by
the mode of cooperation i.e. incremental or diffusion. In
incremental mode of cooperation, each node transmits its local
parameter estimate to the adjacent node and the information
flows in a sequential manner. During this time, the nodes
act like independent agents and there is a limited interaction
among the nodes. This requires less amount of communication
and power.

In diffusion mode of cooperation, each node transmits its
local parameter estimate to all its neighbors as dictated by
network topology. In this mode the nodes have access to more
amount of data. But this mode of cooperation requires more
amount of communication compared to incremental mode. The



amount of communication can be reduced by allowing each
node to communicate only with a subset of its neighbors.

In this paper, we focus on the incremental mode of co-
operation. Consider a network consisting ofN nodes. Each
node has access to a local temperature measurementTi. The
objective is to provide each node with information about the
average temperaturêT . Averages can be viewed as the values
minimizing quadratic cost functions. Quadratic optimization
problems have solutions which are linear functions of the
data. A simple accumulation of parameter estimate leads to
a solution. General optimization problems can often be solved
using this simple, distributed algorithms.

In general, an optimization problem can be expressed as:

f(θ) =
1

N

N
∑

i=1

fi(θ) (1)

whereθ is the parameter to be estimated, andf(θ) is the cost
function which can be expressed as a sum ofN local cost
functions{fi(θ)}i=1

N in which fi(θ) only depends on the data
measured at sensori and is given by,

fi(θ) =
1

M

M
∑

j=1

(xi,j − θ)2 (2)

wherexi,j is the j-th measurement ofi-th sensor.
Hence putting the value offi(θ) from (2) into (1),

f(θ) =
1

MN

N
∑

i=1

M
∑

j=1

(xi,j − θ)2 (3)

In the proposed approach, an estimate of the parameterθ is
passed from node to node. Each node updates the parameter to
reduce its local cost (2) and then passes the updated parameter
to the next node. The flow of information from first node to
the last node forms a single cycle. Several cycles through the
network are required to obtain a solution. These distributed
algorithms can be viewed as incremental subgradient opti-
mization procedures, and the number of cycles required to
obtain a good solution can be characterized theoretically.If M
andN are large, then a high quality estimate can be obtained
using a distributed optimization algorithm with less energy and
communications than the centralized approach.

II. D ECENTRALIZED INCREMENTAL OPTIMIZATION

For a convex differentiable function,f : Θ → R, the
following inequality for the gradient off at a pointθ0 holds
for all θ ∈ Θ:

f(θ) ≥ f(θ0) − (θ − θ0)
T∇f(θ0)

In general, for a convex functionf, a subgradient off at
θ0 (observing thatf may not be differentiable atθ0) is any
directiong such that

f(θ) ≥ f(θ0) − (θ − θ0)
T g (4)

and the subdifferential of f atθ0, denote∂f(θ0), is the set of
all subgradients off at θ0). Note that if f is differentiable at
θ0, then∂f(θ0) ≡ {∇f(θ0)}; i.e., the gradient off at θ0 is
the only direction satisfying (4).

Here a network ofN sensors is considered in which each
sensor collectsM measurements. Letxi,j denote thej-th
measurement taken at thei-th sensor. We would like to
compute

θ̂ = arg min
θ∈Θ

f(θ) (5)

where θ is a set of parameters which describe the global
phenomena being sensed by the network andf(θ) is the cost
function as defined in (3). The functions,fi : R

d → R

are convex (but not necessarily differentiable) andΘ is a
nonempty, closed, and convex subset ofR

d.
The optimization problems can be solved iteratively by

using gradient and subgradient methods. The update equation
for a centralized subgradient descent approach to solve (5)is

θ̂k+1 = θ̂k − α

N
∑

i=1

gi,k (6)

wheregi,k ∈ ∂fi(θ̂
(k)), α is a positive step size, andk is the

iteration number. In this approach each update step uses data
from all the sensors.

In a decentralized incremental approach, each iteration (6)
is divided intoN subiterations. Innth subiteration,nth sensor
node updates its local parameter estimatefn(θ). The algorithm
can be written as:

ψ
(k)
0 = θ̂(k−1) (7)

ψ
(k)
i = ψ

(k)
i−1 − αgi,k, i = 1, 2, . . . , N (8)

θ̂(k) = ψ
(k)
N (9)

where θ̂(k) is the estimated parameter vector obtained afterk
iterations andψ(k)

N is the parameter estimate ofN th node in
kth iteration. For analyzing the rate of convergence an arbitrary
starting point is assumed.

The energy savings ratio between the use of an incremental
optimization algorithm and a centralized optimization algo-
rithm is shown to be [3]

R = c3MN1/dǫ2 (10)

For N nodes withM readings each, a maximum estimation
error ǫ, d the number of dimensions the sensor network is
deployed in, andc3 is the ratio between the number of bits
required to describe the parameter vectorθ and the measure-
ments size in bits. Thus, as the number of readings or nodes
in the network increases, it will become more advantageous
to use an incremental algorithm for processing.

III. E STIMATION IN WIRELESSSENSORNETWORK BY

DISTRIBUTED LEARNING

The main challenges in estimating parameters in a wireless
sensor network are link failure and impulsive noise. A noise
level that fluctuates over a range greater than 10 dB during
observation is classified as impulsive. Here we propose an
distributed algorithm which is robust to link failure as well as
impulsive noise while maintaining faster convergence and low
residual mean square error(MSE). Bang et al [6] have proposed
a proportional sign algorithm which is robust in the presence of



contaminated-Gaussian noise, but this algorithm only involves
a fixed nonlinear function [10]. Delouille et al. in [11] have
proposed a method that minimizes the mean square error by
using an iterative algorithm. Transmission of all data to a
central processor and then estimation using techniques such
as Wiener Filtering (with complexityO(N2)), requires a large
amount of communication. Instead the estimation process is
divided among smaller groups of nodes which will interchange
their measurements to give an optimal set of estimates. In this
paper the robust estimation in incremental approach is shown
using a real time estimation problem in sensor network.

Suppose that a sensor network has been deployed over a re-
gion to find the average temperature. Each sensor collects a set
of M temperature measurements,{xi,j}m

i=1, j = 1, 2, . . . , N
over some period. At the end of the day the mean temperature

p̂ =
1

MN

∑

i,j

xi,j

is to be calculated. Let us assume that the measurements are
i.i.d. and the variance of each measurement isσ2. However,
some fraction say10% of sensors are damaged or mis-
calibrated, so that they give reading with variance100σ2. Then
the estimator variance will increases by a factor of 10. Ideally,
these bad measurements should be identified and discarded
from the estimation process. Robust estimation techniques
attempt to do so by modifying the cost function.

In a general estimation problem, the classical least-square
loss function,‖x − θ‖2, is used. For robust estimation, the
classical least-square loss function is replaced with a different
robust function,h(x, θ). Typically the the robust function
h(x, θ) is chosen to give less weight to data points which
deviate greatly from the parameter,θ. So the cost function (2)
is modified for a robust estimation and given as

frobust(θ) =
1

MN

N
∑

i=1

M
∑

j=1

h(xi,j , θ)

Several robust functions are available in literature. Thel1
distance is one example of a robust function. Another standard
robust cost function is the Huber loss function [3] as

h(x; θ) =

{

‖x− θ‖2/2, for ‖x− θ‖ ≤ γ
γ‖x− θ‖ − γ2/2, for ‖x− θ‖ > γ

(11)

This function acts as usual squared error loss function if the
distance between the data pointx andγ is within a threshold
value γ that means ifx close toθ, but gives less weight to
points outside a radiusγ from the locationθ.

Here another function known as error saturation non-
linearity [12], [13] is proposed which is robust against link
failure and Gaussian-contaminated impulsive noise. The cost
function for errore = ‖x− θ‖ is defined as

h(e) =

∫ e

0

exp[−u2/2σ2
s ]du =

√

π

2
erf

[

e√
2σs

]

(12)

whereσs is a parameter that defines the degree of saturation.

A distributed robust estimation algorithm is easily attained

in the incremental subgradient framework by equating

fi(θ) =
1

M

M
∑

j=1

h(xi,j ; θ) (13)
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Fig. 1. Robust incremental estimation procedures using Hubber function and
error saturation nonlinearity when some nodes are damaged andin presence
of impulsive noise (a)10%.(b) 50% of the sensors are damaged

A. Robust incremental estimation during node failure and
impulsive noise condition

A contaminated-Gaussian impulsive noise (a two compo-
nent Gaussian mixture) [14]–[16] is modeled as

v(i) = vg(i) + vim(i) = vg(i) + b(i)vw(i) (14)

wherevg(i) and vw(i) are independent zero mean Gaussian
noise sequences with variancesσ2

g andσ2
w, respectively;b(i)

is a switch sequence of ones and zeros, which is modeled as an
i.i.d. Bernoulli random process with probability of occurrence
Pr(b(i) = 1) = pr andPr(b(i) = 0) = 1 − pr. The variance
of vw(i) is chosen to be much larger than that ofvg(i) so
that with b(i) = 1, a large impulse is experienced inv(i). The
corresponding pdf ofv(i) is given as

fv(x) =
1 − pr
√

2πσg

exp

(

−x2

2σ2
g

)

+
pr

√

2πσΣ

exp

(

−x2

2σ2

Σ

)

(15)

whereσ2
Σ = σ2

g + σ2
w andE[v2(i)] = σ2

v = σ2
g + prσ

2
w.

The performance of the robust estimation algorithms in
presence of impulsive noise is depicted in Figs. 1(a) and 1(b).



The parameters of the algorithm are taken as follows: the
step sizeα = 0.1 and σ2

s = 10, σ2
g = 10−3, σ2

w = 104σ2
g .

The results shows that the incremental robust estimation al-
gorithms are robust to impulsive noise. The simulation results
also reveal that the incremental robust estimate using error
saturation non-linearity converges faster compared to Hubber
loss function.

IV. CONCLUSION

This paper has investigated a simple distributed algorithm
for data processing in a wireless sensor network. The basic
operation involves circulation of a parameter estimate through
the network, and small adjustments to the estimate at each
node based on its local measured data. This distributed algo-
rithm can be viewed as incremental subgradient optimization
procedure. A new cost function is proposed which is robust
to node failure and impulsive noise. The simulation results
show that the robust incremental estimate obtained using error
saturation non-linearity is better than the estimate obtained by
Huber loss function based method.
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