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Abstract—Wireless sensor networks (WSN) have been pro- individual nodes. This mode of operation requires a powerfu
posed as a solution to environment sensing, target tracking, central processor and large amount of communication betwee
data collection and others. WSN collect an enormous amount sansor nodes and the central processor. In addition, aatentr
of data over space and time. The objective is to estimate of . . - - .
a parameter or function from these data. Learning is used in |.zed solution I|m|t§ the ab|I|ty of the nodgs to adapt. |.r.1 real
detection and estimation problems when no probablistic model time. Therefore, distributed signal processing and opatmn
relating an observation. This paper investigates a general class of are highly desired, especially in large-scale WSN systers [3
distributed algorithms for data processing, eliminating the need  Several methods for estimation problems are proposed in
to transmit raw dafa to a central processor. This can provide  jitarature which exploit the physical behavior of themyv
significant reductions in the amount of communication and . . -
energy required to obtain an accurate estimate. The estimation being _measured. The most important characteristic O_f any
problems we consider are expressed as the optimization of aeventis the correlation between the measurements atatiffer
cost function involving data from all sensor nodes. Here the nodes. Recently, several distributed optimization athars
distributed algorithm is based _on _an incremental optimization based on gradient search have been proposed' Due to the |arge
process. A parameter estimate is circulated through the network 5,0 int of complexity in assuring convergence of distriBute
and along the way each node makes a small adjustment to the . . S L
estimate based on its local data. gradient s_garch algorithms, the objective function is sl

to be additive and convex.
Distributed signal processing deals with the extraction of
. INTRODUCTION information from local data collected at nodes that are dis-

In wireless sensor networks(WSN) comprising the nodes arébuted over a geographical area. Each node in a network
employed to collect data like local temperature, wind spee@cords noisy observations related to the parameter to be
humidity, or concentration of some materials etc over a geestimated. The nodes would then interact with their neighbo
graphic area and are envisioned to make a dramatic impact dn @ certain manner, according to the network topology,egith
number of applications such as, precision agricultureasiées in an incremental [4], [7]-[9] or by diffusion [5] approach.
relief management, radar, and acoustic source localizaliv A network is more efficient if it requires less communication
these applications, each node with its computational poweetween nodes to estimate the parameter vector [1], [2].
able to send data to a subset of the network nodes, and tries
to estimate the parameter of interest [1], [2]. Therefoneye
is a great deal of effort to devising algorithms that are abﬁ'
improve the estimate of the parameters of interest in everyDistributed wireless sensor networks are characterised by
node with information exchange between nodes [4], [5]. Motbe mode of cooperation i.e. incremental or diffusion. In
precisely, in mathematical terms, each node optimizes & coxremental mode of cooperation, each node transmitsdtd lo
function that depends on all information in the network.cgin parameter estimate to the adjacent node and the information
DWSN can be be deployed in almost any kind of terrain witlows in a sequential manner. During this time, the nodes
a hostile environment, it is preferred over traditional edir act like independent agents and there is a limited inteyacti

Distributed Optimization Techniques

network. among the nodes. This requires less amount of communication
In a DWSN architecture, the system performs estimatioand power.
detection, classification, localization and tracking tastc. In diffusion mode of cooperation, each node transmits its

In a traditional centralized solution, nodes in the networdlocal parameter estimate to all its neighbors as dictated by
collect data and transmit them to a central processor fthdur network topology. In this mode the nodes have access to more
processing. The central processor estimates the paramatapunt of data. But this mode of cooperation requires more
vector using received data and the result is broadcastdédtbacamount of communication compared to incremental mode. The



amount of communication can be reduced by allowing eachHere a network ofN sensors is considered in which each
node to communicate only with a subset of its neighbors. sensor collectsM measurements. Let; ; denote thej-th

In this paper, we focus on the incremental mode of coreasurement taken at theth sensor. We would like to
operation. Consider a network consisting &f nodes. Each compute
node has access to a local temperature measurémemhe A .
objective is to provide each node with information about the ¢ = 21&min f(6) ®)

average temperatute. Averages can be viewed as the Value\?/heree is a set of parameters which describe the global

minimizing quadratic cost functions. Quadratic optimiaat . o0 being sensed by the network #f#) is the cost
problems have solutions which are linear functions of the ..o -« qefined in (3). The functiong; : R¢ — R

data. A simple accumulation of parameter estimate leads 10, .;nhvex (but not necessarily differentiable) afdis a
a solution. General optimization problems can often beemlvnonempty closed. and convex subsefRst

usling this silmple, dit_str?bu:.ed algobrlithms. b d as- The optimization problems can be solved iteratively by
N general, an optimization problem can be expresse a%sing gradient and subgradient methods. The update eguatio

1 X for a centralized subgradient descent approach to solvis (5)
FO) =5 fi6) (1)
N = . . N
_ - _ _ Opi1=0r — Zgi,k (6)
whered is the parameter to be estimated, gf{d) is the cost im1

function which can be expressed as a sumNofocal cost
functions{f;(6)}%* in which f;(0) only depends on the data
measured at sensorlnd is given by,

whereg; . € 8f;(0%), o is a positive step size, arldis the
iteration number. In this approach each update step usas dat
from all the sensors.

1 U 9 In a decentralized incremental approach, each iteratipn (6
fi0) = M Z(% —9) (2) s divided intoN subiterations. Imth subiterationnth sensor
J=1 node updates its local parameter estinfiaté). The algorithm
wherez; ; is the j-th measurement afth sensor. can be written as:
Hence putting the value of;(6) from (2) into (1), wé’“) _ -1 %
L v > PP =y —agi, i=1,2,...,N ©)
10) = 33 22> _(@is = 0) 3 i = Vi1 ok SR
i=1 j=1 Q(k) = QZ)J(V) (9)

In the pr roach, an estim f th rariaser ALY : .
the proposed approach, an estimate of the parariase wh[eree(’“) is the estimated parameter vector obtained déter
passed from node to node. Each node updates the parameter Ot' ) is 1h ¢ timate afth node i
reduce its local cost (2) and then passes the updated pazrrarn'&i? lons andpy” is € parameter estimate node In

th iteration. For analyzing the rate of convergence an rayit

to the next node. The flow of information from first node tcéc

the last node forms a single cycle. Several cycles through tﬂa_‘lfﬂng point is a§sumet:'. bet th fani tal
network are required to obtain a solution. These distrithute € energy savings ratio between the use of an incrementa

algorithms can be viewed as incremental subgradient op?f-)t'm'_zat'r?n alglorghm3and a centralized optimization calg
mization procedures, and the number of cycles required rfg1m Is shown to be [3]

obtain a good solution can be characterized theoretidaliM R =c3MNVde2 (10)
andN are large, then a high quality estimate can be obtained ] . . o
using a distributed optimization algorithm with less enyeagd For N nodes withM readings each, a maximum estimation

communications than the centralized approach. error ¢, d the number of dimensions the sensor network is
deployed in, and:; is the ratio between the number of bits
II. DECENTRALIZED INCREMENTAL OPTIMIZATION required to describe the parameter vedtand the measure-

ments size in bits. Thus, as the number of readings or nodes

For a convex differentiable functionf : © — R, the | ) N
in the network increases, it will become more advantageous

following inequality for the gradient of at a pointf, holds

for all 6 € O to use an incremental algorithm for processing.
T
f(0) = f(6o) — (0 = 60)" V f(00) 1. ESTIMATION IN WIRELESSSENSORNETWORK BY
In general, for a convex functiofi a subgradient of at DISTRIBUTED LEARNING
0o (observing thaf may not be differentiable &) is any ~ The main challenges in estimating parameters in a wireless
directiong such that sensor network are link failure and impulsive noise. A noise
level that fluctuates over a range greater than 10 dB durin
£(0) = £(60) = (0 —00)"g @) e J

observation is classified as impulsive. Here we propose an
and the subdifferential of f &y, denotedf(6y), is the set of distributed algorithm which is robust to link failure as waé
all subgradients of at 6,). Note that if f is differentiable at impulsive noise while maintaining faster convergence and |
o, thendf(0y) = {Vf(6p)}; i.e, the gradient off at d, is residual mean square error(MSE). Bang et al [6] have prapose
the only direction satisfying (4). a proportional sign algorithm which is robust in the preseoic



contaminated-Gaussian noise, but this algorithm onlylim& in the incremental subgradient framework by equating

a fixed nonlinear function [10]. Delouille et al. in [11] have M

proposed a method that minimizes the mean square error by ¢, () — Zh(xijﬂ) (13)
using an iterative algorithm. Transmission of all data to a ’
central processor and then estimation using techniquds suc

as Wiener Filtering (with complexit@)(IN?)), requires a large

amount of communication. Instead the estimation process is 15

Least Square Estimate

divided among smaller groups of nodes which will interchang Robust Estimate(Huber)

Robust Estimate(Error Sat. Nonlinearity)

their measurements to give an optimal set of estimates.ign th
paper the robust estimation in incremental approach is show
using a real time estimation problem in sensor network.

N
S)

Suppose that a sensor network has been deployed over a re-
gion to find the average temperature. Each sensor colleets a s
of M temperature measurements;; ;}7,,j = 1,2,..., N
over some period. At the end of the day the mean temperature

Estimate Parameter

)

Subiteration number

1
ﬁ = 37T T g % 50 100 150 200 250 300
MN lz;

is to be calculated. Let us assume that the measurements are (a) 10% of the sensors are damaged
i.i.d. and the variance of each measurementis However,
some fraction sayl0% of sensors are damaged or mis-
calibrated, so that they give reading with varian6o2. Then
the estimator variance will increases by a factor of 10. ligea
these bad measurements should be identified and discarded
from the estimation process. Robust estimation techniques
attempt to do so by modifying the cost function.

15

Least Square Estimate
Robust Estimate(Hubber)
Robust Estimate(Error Sat. Nonlinearity)

Estimate Parameter

In a general estimation problem, the classical least-squar
loss function, ||z — 6], is used. For robust estimation, the
classical least-square loss function is replaced with ferifit

robust function, h(x,0). Typically the the robust function o PR e Y
h(z,0) is chosen to give less weight to data points which Subiteration number
deviate greatly from the parametér,So the cost function (2) (b) 50% of the sensors are damaged

is modified for a robust estimation and given as _ _ o _ _
Fig. 1. Robust incremental estimation procedures using Hubinetion and

1 N M error saturation nonlinearity when some nodes are damagethgrésence
Frobust (0) = STA Z Z h(z; ;,0) of impulsive noise (a)l0%.(b) 50% of the sensors are damaged

i=1j=1
Several robust functions are available in literature. The
distance is one example of a robust function. Another stahd#\. Robust incremental estimation during node failure and
robust cost function is the Huber loss function [3] as impulsive noise condition

o —0||2/2, for ||z — 6] <~ A contaminated-Gaussian impulsive noise (a two compo-
h(w;0) = { Yl — 0] —A2/2, for |z —0] >~ (1) nent Gaussian mixture) [14]-[16] is modeled as

This function acts as usual squared error loss functiondf th (i) = vy(i) 4 vim (1) = vy(i) + b(i)vy (7) (14)

distance between thg data pointind-y is_within a thrgshold where v, (i) and v, (i) are independent zero mean Gaussian
val_uey tha.t means _|fx close to#, but_glves less weight t0 noise sequences with variances and o2, respectively;(i)
points outside a radius from the locationd. is a switch sequence of ones and zeros, which is modeled as an

) ) i.i.d. Bernoulli random process with probability of ocoemce
Here another function known as error saturation norp,.(s(i) = 1) = p, and P.(b(i) = 0) = 1 — p,. The variance

linearity [12], [13] is proposed which is robust againstklin of v, (i) is chosen to be much larger than that«fi) so

failure and Gaussian-contaminated impulsive noise. The cghat withb(i) = 1, a large impulse is experiencedi(:). The
function for errore = ||z — 6| is defined as corresponding pdf of (i) is given as

e _1—p —z? Pr —z?
h(e) = /0 exp[7u2/203]du = \/Zerf [e} (12) folw) = V2ro, °xp ( 203) + dros, °xp (@) (15)

V20,
2 __ 2 2 20\ — ~2 _ 2 2
whereo, is a parameter that defines the degree of saturatisH}€r€os = oy + oy, and B[v*(i)] = o, = o +poy,. _
The performance of the robust estimation algorithms in

A distributed robust estimation algorithm is easily aten presence of impulsive noise is depicted in Figs. 1(a) andl 1(b




The parameters of the algorithm are taken as follows: th@ Cassio G. Lopes and Ali H. Sayethcremental Adaptive Strategies Over
step sizea = 0.1 and Ug _ 10’02 — 10—3,0120 = 10%52. Distributed Network$EEE Trans on Signal Processing, Vol. 55(8), Aug
Th its sh hat the i | rob g 2007, pp. 4064-4077.

e_ results shows t a_t the 'r_lcrem_enta ro U_St eSt!matlon f‘?&h Cassio G. Lopes and Ali H. Saye®iffusion least-mean squares Over
gorithms are robust to impulsive noise. The simulation ltssu  adaptive Networks: Formulation and Performance Analy$EEE Trans

also reveal that the incremental robust estimate using errg©n Signal Processing, Vol. 56(7), July 2008, pp. 3122-3136.

. l . f d tobdub S. C. Bang and S. Anm robust adaptive algorithm and its performance
saturation non-linearity converges faster compared tobdu analysis with contaminated-Gaussian ngig&oc. ISPACS, Seol, Korea,

loss function. Oct 1994, pp. 295-300.
[7] Dimitri P. Bertsekas, "A New Class of Incremental Gradiéfethods for
Least Squares Problems3JAM J. Optim,. vol. 7, pp. 913-926, Sep. 1997.
IV. CONCLUSION [8] Geary, A. and Bertsekas, D.P., "Incremental subgradieethods for
; ; : ; ot ; nondifferentiable optimization"Decision and Control, 1999. Proceedings
This paper ha§ myestlgafted a simple distributed algorlthrr_1of the 38th IEEE Conference onol. 1, pp. 907-912, 1999,
for data processing in a wireless sensor network. The bagi Nedic Angelia and Bertsekas D. P., "Incremental SubgmadMethods

operation involves circulation of a parameter estimateugh for Nondifferentiable Optimization”SIAM J. on Optimization.vol. 12,

. . 0. 1, pp. 1052-6234, 2001.
the network, and small adjustments to the estimate at e"TEJET S.Koike, Adaptive threshold nonlinear algorithm fatagtive filters with

node based on its local measured data. This distributed algorobustness against impulse noi$EEE Trans on Acoustics, Speech, and
rithm can be viewed as incremental subgradient optimimatio Signal Processingvol. 45(9), Sep 1997, pp. 2391-2395.

: : ; : ] V Delouille and R. Neelamani and Richard G. Barani®qbust Dis-
procedure. A new cost function is proposed which is rObuE1'1tributed Estimation Using the Embedded Subgraphs AlgaritEEE Trans

to node failure and impulsive noise. The simulation results on Signal Processing, Vol. 55(8), No. 1, Aug 2006, pp. 290863
show that the robust incremental estimate obtained usiog ef12] N. J. BershadOn Error saturation nonlinearities for LMS adaptatipn

saturation non-linearity is better than the estimate olethby |1Eg|§|§ L’g”i 0 4'2‘:20“3“‘35' Speech, and Signal Processing 3864), Apr
Huber loss function based method. [13] N. J. Bershad®n Error saturation nonlinearities for LMS adaptation in
Impulsive noiselEEE Trans on Signal Processing, Vol. 56(9), Sep 2008,
pp. 4526-4530.
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