Effect of SHI IRRADIATION on CRITICAL CURRENT DENSITY in YBa$_2$Cu$_3$O$_{7-\delta}$ Thick Film with Y$_2$O$_3$ Addition

Collaborators
Arpna Kujur
Dr. P.N. Vishwakarma
Dr. Alok Banerjee
Dr. D. Kanjilal

D. Behera
National Institute of Technology, Rourkela
Pro
jectile ion

Electronic Energy Loss (S_e)

Nucleus

Electron cloud

Implanted Ion

Nuclear Energy Loss (S_n)

D Behera, NIT Rourkela
Mixed state
\[B_{c1} < B < B_{c2} \]

The vortices repel each other

A triangular lattice forms

The vortex lattice has the usual defects and interacts with the crystal lattice
Effect of addition at grain boundaries

Modification of the grain boundaries with nanoparticles composites have shown that J_c increases when nanometric particles of NiO, Y$_2$O$_3$, SnO$_2$, SiC, Al$_2$O$_3$, BZO, etc. added to HTSC.

Artificial Pinning Sites

- Heavy ion irradiation
 - Substrate Decoration
 - Antidots (Holes)
 - Magnetic Dots

- Columnar

- Columnar
- Columnar
- Columnar

Y_2O_3 has close lattice mismatch with YBCO of about ~ 0.6% thereby allowing low intrinsic strain, which is reported to increase J_c.

- Campbell et al. Physica C 423 (2005) 1

D Behera, NIT Rourkela
Heavy Ion Irradiation

Irradiating the HTSCs by heavy ions creates extended structural (columnar) defects in the material.

Columnar defects can pin a vortex along its whole length.

Defects are considered to be effective vortex pinning sites (even at high temperatures).

This increase of pinning strength due to the columnar defects is expected to enhance the critical current density.

D Behera, NIT Rourkela
The random distribution of defects in HTSC by SHI irradiation act as flux pinning centres for the vortices.

This pinning is optimized when the size of the defects approaches the superconducting coherence length (2-4 nm for YBa$_2$Cu$_3$O$_{7-d}$ at 77 K).

- D. Kanjilal, Vacuum 48 (1997) 979
Critical Current Density

Columnar defects by irradiation increases J_c.

Improvements in J_c at various temperature and under the magnetic field are brought about by artificial pinning centers (APCs).

APCs are known to be highly effective for pinning vortices.

Pancake vortices

In the most anisotropic HTS the vortices break between the Cu-O-layers forming pancake vortices

- The pancake vortices move much more easily than normal vortices
- This is one of the main reasons why BSCCO performs poorly in magnetic field

\[\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta} \] is currently the best suited high \(T_c \) superconductor for most bulk applications

D Behera, NIT Rourkela
Motivation

In this present work we have studied synergetic effect of

Non superconducting inclusion Y_2O_3

&

SHI of 200 MeV of silver ions on YBCO thick films.

Magnetic studies are further carried to investigate critical current density.

D Behera, NIT Rourkela
Experimental

Sample Preparation

Thick film by diffusion reaction technique

Substrate Y211 (green phase)

Overlayer Ba$_3$Cu$_5$O$_8$

\[\text{Y211} + \text{Ba}_3\text{Cu}_5\text{O}_8 \rightarrow \text{YBCO} \]

\[\text{Y211} + \text{Ba}_3\text{Cu}_5\text{O}_8 + \text{Y}_2\text{O}_3 \rightarrow \text{YBCO} + \text{Y}_2\text{O}_3 \]

Irradiation of Thick film by 200 MeV Ag ions of Fluence

- 5×10^{10} ions/cm2
- 5×10^{11} ions/cm2

D Behera, NIT Rourkela
Characterization

Structural properties (XRD)

Surface morphology (SEM)

MAGNETIZATION STUDIES (M-H)
RESULTS and DISCUSSION

XRD pattern of YBCO and Y_2O_3 doped YBCO thick film irradiated with 200 MeV of Ag ion with varying fluence

D Behera, NIT Rourkela
SEM micrographs of 200 MeV silver irradiated samples with fluence of
(a) pure YBCO thick film (b) 10 wt.%Y$_2$O$_3$ doped YBCO pristine
(c) 5×10^{10} ions/cm2 (d) 5×10^{11} ions/cm2 for YBCO thick films

D Behera, NIT Rourkela
SEM micrographs of 200 MeV silver irradiated samples with fluence.
(e) 5×10^{10} ions/cm2 (f) 5×10^{11} ions/cm2 for Y$_2$O$_3$ doped YBCO.

D Behera, NIT Rourkela
Magnetization Loops

M-H loop of YBCO thick film irradiated with 200 MeV silver ions

D Behera, NIT Rourkela
Using Bean’s critical state model, \(J_c \) is calculated

\[
J_c = \frac{20 \Delta M}{a(1 - \frac{a}{3b})}
\]

where
- \(a \) thickness of the bar shaped sample
- \(b \) width of the bar shaped sample
- \(\Delta M = M_+ - M_- \) extracted from the magnetization loop.

D Behera, NIT Rourkela
Magnetic Field dependence of critical current density for YBCO and YBCO+Y$_2$O$_3$ irradiated with 200 MeV Ag ions at 40 K with varying field
Pinning force, $F_p(H)$ curves for YBCO doped YBCO and YBCO+Y_2O_3 irradiated with 200 MeV Ag ions at 40 K with varying field

D Behera, NIT Rourkela
Observed values of Critical current density (J_c) and maximum pinning force (F_p)

<table>
<thead>
<tr>
<th>Sample</th>
<th>J_c (A/cm²x10⁵)</th>
<th>F_p(GN/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YBCO</td>
<td>1.06</td>
<td>0.135</td>
</tr>
<tr>
<td>Fluence (5x10¹⁰ ions/cm²)</td>
<td>1.41</td>
<td>0.175</td>
</tr>
<tr>
<td>Fluence (5x10¹¹ ions/cm²)</td>
<td>2.49</td>
<td>0.246</td>
</tr>
<tr>
<td>YBCO+Y₂O₃</td>
<td>1.32</td>
<td>0.161</td>
</tr>
<tr>
<td>Fluence (5x10¹⁰ ions/cm²)</td>
<td>1.28</td>
<td>0.163</td>
</tr>
<tr>
<td>Fluence (5x10¹⁰ ions/cm²)</td>
<td>0.74</td>
<td>0.073</td>
</tr>
</tbody>
</table>

D Behera, NIT Rourkela
The structure quality at the grain boundaries varies with silver irradiation.

- Grain size are decreased and the edges become rounded.

YBCO irradiated with silver has greater magnetization width than pure YBCO hence have higher J_c.

- Irradiated pure YBCO as well YBCO+Y_2O_3 composite have higher J_c as compared to that of unirradiated YBCO.

J_c decreases for YBCO+Y_2O_3 composites with increasing irradiation.

- Pinning force at certain low field has the maximum value and then starts decreasing with the increase in field.

Pinning force is maximum for YBCO irradiated with 5×10^{11} ions/cm2.

D Behera, NIT Rourkela
CONCLUSION

The concentration of Y_2O_3 may be greater than 10 wt.\% due to Y 211 substrate and composite diffusion reaction.

As the defects (columnar defects due to irradiation) are more, the interaction energy between vortex and defects dominate over the pinning energy. Hence the pinning sites are not used effectively. Thus J_c starts to decrease with irradiation.