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a b s t r a c t

This paper addresses the effectiveness of soft computing approaches such as evolutionary computation
(EC) and neural network (NN) to system identification of nonlinear systems. In this work, two evolutionary
computing approaches namely differential evolution (DE) and opposition based differential evolution
(ODE) combined with Levenberg Marquardt algorithm have been considered for training the feed-forward
neural network applied for nonlinear system identification. Results obtained envisage that the proposed
combined opposition based differential evolution neural network (ODE-NN) approach to identification of
nonlinear system exhibits better model identification accuracy compared to differential evolution neural
network (DE-NN) approach. The above method is finally tested on a one degree of freedom (1DOF) highly
nonlinear twin rotor multi-input–multi-output system (TRMS) to verify the identification performance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

System identification is widely used in a number of applications
such as in control system [1], communication [2], signal process-
ing [3], chemical process control [4], biological processes [5], etc.
In the strict sense, all the real-world problems are nonlinear in
nature. It is pertinent that there is less computational difficulty
encountered for the identification of a linear system. However, in
the nonlinear system identification, the scenario is not straight-
forward. There are some classical parameterized models such as
Voltera series [6], Winner–Hammerstein model [7] and polynomial
identification methods [8,9] which provide a reasonable degree
of accuracy but nonetheless these methods involve computational
complexities. Subsequently, neural network [10–13], wavelet net-
works [14] techniques were applied to system identification of
nonlinear systems in which adaptive techniques such as back-
propagation algorithm found to provide better accuracy compared
to non-adaptive ones such as Voltera series, Winner–Hammerstein
modeling and polynomial methods. A number of theoretical and
practical system identification problems have been solved using
neural network approach with multi-layered perceptron (MLP)
with back-propagation approach.
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The nice property of universal approximation of the neural net-
works make them suitable for modeling complex system dynamics
in a systematic approach especially those which are hard to
describe mathematically. It has been proven that any continuous
function can be approximated by a feed-forward neural network
trained with back-propagation learning algorithm to a reasonable
degree of accuracy [10]. This function approximation property can
be exploited to model a number of practical complex systems.
Narendra and Parthasarathy [13] have shown that multi-layer neu-
ral networks trained with standard back-propagation algorithm
can be used effectively for the identification of nonlinear dynamic
plants.

Recently differential evolution (DE) algorithm has been con-
sidered as a novel evolutionary computation technique [15,16]
used for optimization problems. The DE has been preferred to
many other evolutionary techniques such as genetic algorithm (GA)
[17–20] and particle swarm optimization (PSO) due to its attrac-
tive characteristics such as its simple concept, easy implementation
and quick convergence [15,16]. Generally speaking, all popula-
tion based optimization algorithms, including the DE, suffer from
long computational times because of their evolutionary/stochastic
nature. This crucial drawback sometimes limits their application to
offline problems with little or no real-time prospective.

The concept of opposition based learning (OBL) was introduced by
Tizhoosh [21]. It is applied to accelerate reinforcement learning [22]
and back-propagation learning in neural networks [23]. The main
idea behind OBL is the simultaneous consideration of an estimate
and its corresponding opposite estimate (i.e., guess and opposite
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guess) in order to achieve a better approximation for the current
candidate solution. In this paper, OBL has been utilized to accelerate
the convergence rate of DE. Hence, our proposed approach is called
opposition based differential evolution (ODE). ODE uses opposite
numbers during population initialization and also for generating
new populations during the evolutionary process. Here opposite
numbers have been utilized to speed up the convergence rate of
DE optimization algorithm. Purely random resampling or selection
of solutions from a given population has the chance of visiting or
even revisiting unproductive regions of the search space. It has been
demonstrated [21–28], the chance of this occurring is lower for
opposite numbers than it is for purely random ones. In fact, a math-
ematical proof has already been proposed to show that, opposite
numbers are more likely to be closer to the optimal solution than
purely random ones [24]. In [29], the usefulness of opposite num-
bers is investigated by replacing them with random numbers and it
is applied for population initialization and generation jumping for
different versions of DE.

However, a little work has been reported on applying ODE to sys-
tem identification and its use in training neural network employed
as nonlinear system identifiers. Therefore, it attracts the attention
of the present work for exploiting the use of OBL for effective neu-
ral network training. In this work, an opposition based differential
evolution has been applied as a global optimization method for
feed-forward neural network.

Nonlinear system as considered in [30,31] has been chosen in
this paper for demonstrating the efficacy of the proposed ODE-NN
system identification approach in comparison to DE-NN approach.
In this work, an opposition based differential evolution method
combined with LM has been applied as a global optimization
method for training a feed-forward neural network. In the pro-
posed scheme, the ODE is used to train the neural network that
is chosen as a suitable candidate for nonlinear system identifi-
cation. After observing the trends of training towards minimum
through ODE, the network is then trained by LM. The role of the ODE
here is to approach towards global minimum point and then LM is
used to move forward achieving fast convergence. According to the
proposed algorithm after reaching the basin of global minimum
the algorithm is switched from global search of the evolutionary
algorithm (ODE) to local search, LM. In differential evolution, at
the moment of starting, the differential term is very high. As the
solution approaches to global minimum the differential term auto-
matically changes to a low value. So during the initial period, the
convergence speed is faster and the search space is very large but
in latter stages nearer to the optimum differential term is small, the
algorithm becomes slower which takes more time to converge. As
LM is a gradient based algorithm it can be exploited to increase the
convergence speed for reaching the global minimum.

The main contributions of the paper are as follows:

• The paper proposed a new training paradigm of neural networks
combining an evolutionary algorithm, i.e. ODE with LM to avoid
the possibility of being trapped in local minima.

• LM has been integrated to the search process of the neural
network training enabling faster convergence of the ODE-ANN
employed for nonlinear system identification.

• The identification performance of the proposed ODE-NN scheme
has been compared with the DE-NN approach to nonlinear system
identification and found to be better than the later.

The paper is organized as follows. Section 2 reviews the neural
network approach to system identification. Section 3 presents the
differential evolution technique used for system identification. In
Section 4, we presented a new variant of the DE called opposition
based DE. Subsequently in Section 5 and Section 6, we describe the
algorithm for the proposed opposition based differential evolution

combined with neural network approach to nonlinear system iden-
tification. Finally the paper discusses the results of all the aforesaid
techniques in Section 7 to arrive at conclusions.

2. Identification using neural network

A neural network is a computational structure inspired by
knowledge from neuroscience. In the past, most of the system
identification problems exploit neural networks either multi-layer
perceptron neural network (MLPNN) or radial basis function neu-
ral network. Typically, a MLPNN consists of at least two layers of
neurons with weighted links connecting the output of neurons in
one layer to the input of neurons in the next layer. The weights are
updated as follows

wji(k + 1) = wji(k) + �ıj(k)yj(k) (1)

where wji(k) is the synaptic weight connecting the output of a
neuron i to the input of neuron j at time k. � is the learning rate
parameter and ıj(k) is the local gradient of neuron j at time k. The
learning parameter should be chosen to provide minimization of
the total error function, �. However, for small � the learning pro-
cess becomes slow and large value of � corresponds to fast learning
but leads to oscillation that prevent the algorithm from converging
to the desired solution.

In this section, we discuss a simple example of system identifi-
cation using neural networks. A neural network approach to system
identification involves learning mathematical description of the
system, i.e. unknown functions describing the system dynamics.
The nonlinear system can be described by the following model
given in Eq. (2)

y(k) = N(y(k − 1)· · ·y(k − ny), u(k − 1)· · ·u(k − nu)) (2)

where u(k) and y(k) are inputs and outputs, respectively. ny is the
maximum lag in output and nu is the maximum lag in input. N(.) is
some nonlinear function between input and output. The input out-
put relationship is dependent on the nonlinear function N(.) which
is generally much complex and not available. The system identifi-
cation problem involves for approximating the unknown function
N(.) by using a neural network. There are different neural network
identifier such as parallel identification model and series-parallel
model [13]. However, for brevity we discuss here the series-parallel
model only.

Fig. 1 represents a series-parallel configuration of neural net-
work for nonlinear system identification. In series-parallel model
the output of the plant (rather than the identification model) is
fed back to the identification model [30]. In this figure, error ei(k)
denotes the difference between plant actual output and estimated
output. The delayed samples of the input vector are applied to the
plant. Past values of input and output of the plant form the input
vector to the neural network; ŷp(k) corresponds to estimate the
plant output given by the neural network at any instant of time k.

3. Differential evolution

In a population of potential solutions to an optimization prob-
lem within an n-dimensional search space, a fixed number of
vectors are randomly initialized, and then new populations are
evolved over time to explore the search space and locate the
minima of the objective function. Differential evolutionary strat-
egy (DES) uses a greedy and less stochastic approach in problem
solving rather than the other evolutionary algorithms. DE com-
bines simple arithmetical operators with the classical operators of
recombination, mutation and selection to evolve from a randomly
generated starting population to a final solution. The fundamen-
tal idea behind DE is a scheme whereby it generates the trial



Author's personal copy

B. Subudhi, D. Jena / Applied Soft Computing 11 (2011) 861–871 863

Fig. 1. Neural network (series-parallel model) system identification.

parameter vectors. In each step, the DE mutates vectors by adding
weighted, random vector differentials to them. If the fitness of
the trial vector is better than that of the target, the target vec-
tor is replaced by the trial vector in the next generation. There
are many different variants of DE [16], which are as follows: the
variants are DE/best/1/exp, DE/rand/1/exp, DE/rand-to-best/1/exp,
DE/best/2/exp, DE/rand/2/exp, etc. Now we explain the working
steps involved in employing a DE cycle.

• Step 1: parameter setup
Choose the parameters of population size, the boundary con-

straints of optimization variables, the mutation factor (F), the
crossover rate (C), and the stopping criterion of the maximum
number of generations (g).

• Step 2: initialization of the population
Set generation g = 0. Initialize a population of i = 1, . . . , P

individuals (real-valued d-dimensional solution vectors) with
random values generated according to a uniform probability dis-
tribution in the d-dimensional problem space. These initial values
are chosen randomly within user’s defined bounds.

• Step 3: evaluation of the population
Evaluate the fitness value of each individual of the population.

If the fitness satisfies predefined criteria save the result and stop,
otherwise go to step 4.

• Step 4: mutation operation (or differential operation)
Mutation is an operation that adds a vector differential to a pop-

ulation vector of individuals. For each target vector xi,g a mutant
vector is produced using the following relation

vi,g = xr1,g + F(xr2,g − xr3,g) (3)

In Eq. (3), F is the mutation factor, which provides the amplifi-
cation to the difference between two individuals (xr2,g − xr3,g) so
as to avoid search stagnation and it is usually taken in the range of
[0,1], where i, r1, r2, r3 ∈ {1, 2, . . . , P} are randomly chosen num-
bers but they must be different from each other. P is the number
of population.

• Step 5: recombination operation
Following the mutation operation, recombination is applied

to the population. Recombination is employed to generate a
trial vector by replacing certain parameters of the target vec-
tor with the corresponding parameters of a randomly generated
donor (mutant) vector. There are two methods of recombina-
tion in DE, namely, binomial recombination and exponential
recombination.

In binomial recombination, a series of binomial experiments
are conducted to determine which parent contributes which
parameter to the offspring. Each experiment is mediated by a
crossover constant, C (0 ≤ C ≤ 1). Starting at a randomly selected
parameter, the source of each parameter is determined by com-
paring C to a uniformly distributed random number from the
interval [0,1) which indicates the value of C can exceed the
value 1. If the random number is greater than C, the offspring
gets its parameter from the target individual; otherwise, the
parameter comes from the mutant individual. In exponential
recombination, a single contiguous block of parameters of ran-
dom size and location is copied from the mutant individual
to a copy of the target individual to produce an offspring. A
vector of solutions are selected randomly from the mutant indi-
viduals when randj(randj ∈ [0, 1] , is a random number), is less
than C

tj,i,g =
{

vj,i,g if(randj ≤ C) or j = jrand

xj,i,gotherwise
(4)

j = 1, 2, . . . , d, where d is the number of parameters to be opti-
mized.

• Step 6: selection operation
Selection is the procedure of producing better offspring. If the

trial vector ti,g has an equal or lower value than that of its target
vector, xi,g it replaces the target vector in the next generation;
otherwise the target retains its place in the population for at least
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one more generation

xi,g+1 =
{

ti,g, if f (ti,g) ≤ f (xi,g)
xi,g, otherwise

(5)

Once new population is installed, the process of mutation,
recombination and selection is replaced until the optimum is
located, or a specified termination criterion is satisfied, e.g., the
number of generations reaches a predefined maximum gmax.

At each generation, new vectors are generated by the combi-
nation of vectors randomly chosen from the current population
(mutation). The upcoming vectors are then mixed with a prede-
termined target vector. This operation is called recombination and
produces the trial vector. Finally, the trial vector is accepted for
the next generation if it yields a reduction in the value of the
objective function. This last operator is referred to as a selection.
Fig. 2 shows the pseudo code for differential evolution algorithm.
The most commonly used method for validation is to utilize the
sum-squared error and mean-squared error between the actual
output y(n) of the system and the predicted output ŷ(n). In this
work we have taken the cost function as mean-squared error, i.e.
E = (1/N)

∑N
k=1[y − f (x, w)]2, where N is the number of data con-

sidered.

4. Opposition based differential evolution

In evolutionary algorithm optimization approaches, generally a
uniform random guess is considered for the initial population. In
each generation the solution obtained moves towards the optimal

solution and the search process terminates when some predefined
criteria is satisfied. The time of computation generally depends on
the initial guess, i.e. more is the distance between the initial guess
to optimal solution more time it will take to terminate and vice
versa. Opposition based learning improves the chance of starting
with better initial population by checking the opposite solutions.
According to the probability theory 50% of the time a guess is fur-
ther from the solution than its opposite guess starting with the
closer of the two guesses has the ability to have faster convergence.
Therefore, starting with the closer of the two guesses (as judged by
its fitness) has the potential to accelerate convergence. The same
approach can be applied not only to initial solutions but also contin-
uously to each solution in the current population. However, before
concentrating on OBL, we need to define the concept of opposite
numbers [21].

4.1. Definition of opposite number

Let x ∈ [a, b] be a real number. The opposite number is x̃ which
is defined by x̃ = a + b − x.

Definition of opposite point:
Let p = (x1, x2, . . . , xd) be a point in the D-dimensional space

where x1, x2, . . . , xd ∈ R and xi ∈ [ai, bi]. The opposite point p̃ =
(x̃1, x̃2, . . . , x̃d) where x̃i = ai + bi − xi.

4.2. Opposition based optimization

Let p = (x1, x2, . . . , xd) be a point in the d-dimensional, i.e. a
candidate solution. Assume f(.) is the fitness function which is
used to measure the candidates’ fitness. According to the defini-

Fig. 2. Pseudo code of the differential evolution (DE).
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Fig. 3. Pseudo code of the ODE.

tion of the opposite point p̃ = (x̃1, x̃2, . . . , x̃d) is the opposite of
p = (x1, x2, . . . , xd). Now if f (p̃) ≥ f (p) then point p can be replaced
by p̃ otherwise we will continue with p. Hence the point and its
opposite point are evaluated simultaneously in order to continue
with the more fit ones.

5. Proposed ODE-NN algorithm

Similar to all population based optimization algorithms, two
main steps are distinguishable for DE, namely, population initial-
ization and producing new generations by evolutionary operations
such as mutation, crossover, and selection. We will enhance these
two steps using the OBL scheme. The original DE is chosen as
a parent algorithm and the proposed opposition based ideas are
embedded in DE to accelerate its convergence speed. The pseudo
code for the proposed approach (ODE) is presented in Fig. 3.

5.1. Opposition based population initialization

According to our review of optimization literature, random
number generation, in absence of a priori knowledge, is the com-
mon choice to create an initial population. Therefore, by utilizing
OBL, we can obtain fitter starting candidate solutions even when
there is not a priori knowledge about the solution(s). The following
steps present opposition based initialization for ODE that proce-
dure. Initialize the population pop (P) randomly Calculate opposite

population

opopi,j = aj + bj − popi,j, i = 1, 2, . . . , P, j = 1, 2, . . . , d

where popi,j and opopi,j denote the jth variable of the ith vector
of the population and opposite population, respectively. Select P
fittest individual from (pop U opop) as initial population.

5.2. Opposition based generation jumping

By applying a similar approach to the current population, the
evolutionary process can be forced to jump to a new solution candi-
date, which ideally is fitter than the current one. Based on a jumping
rate (i.e., jumping probability), after generating new populations by
mutation, crossover, and selection, the opposite population is cal-
culated and the fittest individuals are selected from the union of the
current population and the opposite population. Unlike opposition
based initialization, generation jumping calculates the opposite
population dynamically. In each generation the search space is
reduced so that we have to calculate the opposite points by using
variables current interval in the population

onpopi,j = min(npopj) + max(npopj) − npopi,j

By staying within variables’ interval static boundaries, we
would jump outside of the already shrunken search space and the
knowledge of the current reduced space (converged population)
would be lost. Hence, we calculate opposite points by using vari-
ables’ current interval in the population which is, as the search
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does progress, increasingly smaller than the corresponding initial
range.

6. A combined ODE-NN approach to system identification

In the sequel, we describe how an ODE is applied for training
neural network in the frame work of system identification (see
Algorithm 1). According to step 10 in the proposed algorithm, the
value of the cost function after reaching a particular value of ε, the
algorithm is switched from global search such of the evolutionary
algorithm (ODE) to local search, LM. In opposition based differential
evolution, at the moment of starting, the differential term is very
high. As the solution approaches to global minimum the differential
term automatically changes to a low value. So at initial period the
convergence speed is faster and search space is very large but in lat-
ter stages nearer to the optimum due to small differential term the
algorithm becomes slower which will take more time to converge.
As LM is a gradient based algorithm at that point the role of LM is to
increase the convergence speed for reaching the global minimum.
ODE can be applied to global searches within the weight space of a
typical feed-forward neural network. Output of a feed-forward neu-
ral network is a function of synaptic weights w and input values x,
i.e. y = f (x, w). The role of LM in the proposed algorithm has been
described in section I. In the training processes, both the input vec-
tor x and the output vector y are known and the synaptic weights
in w are adapted to obtain appropriate functional mappings from
the input x to the output y. Generally, the adaptation can be car-
ried out by minimizing the network error function E which is of the
form E(y, f(x, w)). In this work we have taken E as mean-squared
error i.e. E = (1/N)

∑N
k=1[y − f (x, w)]2, where N is the number of

data considered. The optimization goal is to minimize the objec-
tive function E by optimizing the values of the network weights w.
Where w = (w1, . . . , wd)

Algorithm 1 (ODE-NN Identification Algorithm).

Step 1

Initialize population pop: Create a population from randomly
chosen object vectors.

Step 2

Find out the opposite population opop: Create an opposite pop-
ulation from the population pop.

Step 3

Create a fittest population npop from both pop U opop with
dimension P

Pg = (w1,g, . . . , wP,g)T , g = 1, . . . , gmax

wi,g = (w1,i,g, . . . , wD,i,g), i = 1, . . . , P

where D is the number of weights in the weight vector and in wi,g,
i is index to the population and g is the generation to which the
population belongs.

Step 4

Evaluate all the candidate solution inside npop for a specified
number of generations.

Step 5

For each ith candidate in npop select the random variables
r1, r2, r3 ∈ {1, 2, . . . , P}.

Step 6

Apply mutation operator to each candidate in population to
yield a mutant vector, i.e.

vj,i,g = wj,r1,g + F(wj,r2,g − wj,r3,g), for j = 1, . . . , d
(i /= r1 /= r2 /= r3) ∈ {1, . . . , P} and F ∈ (0, 1+]

Step 7

Apply crossover, i.e. each vector in the current population is
recombined with a mutant vector to produce trial vector

tj,i,g =
{

vj,i,g if randj[0, 1) ≤ C
wj,i,j otherwise

where C ∈ [0, 1]

Step 8

Apply selection, i.e. between the trial vector and target vector.
If the target vector has an equal or lower objective function value
than that of its target vector, it replaces target vector; otherwise,
the target retains its place in the population.

wi,g =
{

ti,g if E(y, f (x, ti,g)) ≤ E(y, f (x, wi,g))
wi,g otherwise

Step 9

If randj < Jr Find the opposite population of wi,g, i.e. owi,g
Select P fittest individuals from wi,g ∪ owi,g which gives the

populations for the next generation which is represented by wi,g+1.
Else wi,g+1 = wi,g

Step 10

Evaluate E for the weights obtained from step-9 If E ≤ ε where
ε > 0 go to step-8 Else go to step 5.

Step 11

Initialize the weight matrix of Levenberg Marquardt algorithm
taking the values of weights obtained after the fixed number of
iterations. Find out the value of E.

Step 12

Compute the Jacobian matrix J(w).

Step 13

Find �w using the following equation

�w = [JT (w)J(w) + �I]
−1

JT (w)E

Step 14

Recompute E using (w + �w). if this new E is smaller than that
computed in step 7 then reduce � and go to step 1 where � is the
damping factor.
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Step 15

The algorithm is assumed to have converged when the norm of
the gradient, i.e. ||∇E|| = ||JT (w)y − f (x, w)|| is less than some pre-
determined value, or when the sum of squares of errors has been
reduced to some error goal.

7. Results and discussion

We present here the system identification results of different
approaches such as DE-NN and ODE-NN applied to the systems
given in equation (6) and Box and G.M. Jenkins, Time Series Analy-
sis, and a real-time TRMS system.

Example 1 (A Bench Mark Problem). The nonlinear system to be
identified is expressed by

yp(k + 1) = yp(k)[yp(k − 1) + 2][yp(k) + 2.5]

8.5 + [yp(k)]2 + [yp(k − 1)]2
+ u(k) (6)

where yp(k) is the output of the system at the kth time step and u(k)
is the plant input which is uniformly bounded function of time. The
plant is stable at u(k) ∈ [−2, 2], i.e. the input signal u(k) is bounded
in the region [−2, 2]. The identification model be in the form of

ypi(k + 1) = f (yp(k), yp(k − 1)) + u(k) (7)

where f (yp(k), yp(k − 1)) is the nonlinear function of yp(k) and
yp(k − 1) which will be the inputs for DE-NN and ODE-NN neural
system identifier. The output from neural network will be ypi(k + 1).
The goal is to train the above three networks such that when an
input u(k) is presented to the network and to the nonlinear system,
the network outputs ypi(k) and the actual system output yp(k) are
very close.

The neural network identifier structure consisted of eleven
numbers of neurons in the hidden layer. After 500 epochs the train-
ing of the neural identifier has been stopped. After the training is
over, its prediction capability has been tested for input

u(k) =
{

2 cos (2�k/100) if k ≤ 200
1.2 sin (2�k/20) if 200 < k ≤ 500

(8)

Table 1
Parameters for DE and ODE.

Total number of iterations 1000
Population size, N 50
Upper and lower bound of weights [0 1]
Mutation constant factor, F 0.6
Cross over constant, C 0.5
Random number Jr 0.3

Fig. 4. DE-NN identification performance.

Fig. 5. ODE-NN identification performance.

Fig. 6. DE-NN identification error.

Table 1 gives the parameters of DE and ODE. Figs. 4 and 5 give the
identification performance between actual and identified model for
DE-NN and ODE-NN, respectively. Figs. 6 and 7 give the identifica-
tion error and Fig. 8 gives the comparison of mean-squared error for
both the system identification scheme. From the figures it is clear
that both the results are nearly same. The value of mean-squared
error is given in Table 1. From this it is clear that the prediction
error is slightly less in case of ODE-NN approach in comparison to
the proposed DE-NN system identification technique.

Fig. 7. ODE-NN identification error.
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Fig. 8. Mean-squared error.

Example 2 (Box and Jenkins’ Gas Furnace Problem). Box and Jenkins’
gas furnace data are frequently used in performance evaluation of
system identification methods. This is a time series data set for a gas
furnace. The data consists of 296 input–output samples recorded
with a sampling period of 9 s. The gas combustion process has
one variable, gas flow u(t), and one output variable, the concen-
tration of carbon dioxide (CO2), y(t). The instantaneous values of
output y(t) have been regarded as being influenced by ten variables
y(t − 1), y(t − 2), y(t − 3), y(t − 4), y(t − 5) u(t − 1), u(t − 2), u(t − 3),
u(t − 4), u(t − 6). The original data set contains 296 [u(k),y(k)] data
pairs. By converting the data so that each training data consists of
[y(t − 1). . .y(t − 4),u(t − 1). . .u(t − 6)] reduces the number of effec-
tive data points to 290. The number of training data was taken as
100 for all the cases and rest 190 data were the test data. Here
we have taken two inputs for simplicity one is from furnace out-
put and other is from furnace input so we have build 24 models of
different input and output. Table 1 gives the training and testing
performances of these 24 models. For all the methods eleven num-
ber of hidden layer neurons were taken and the results obtained
after 100 epochs. From Table 2 we can conclude that model with
y(t − 1) and u(t − 3) as input has the smallest training and testing
error for both the DE-NN and ODE-NN identification schemes. It is
also clear that ODE is having less training and testing errors in com-
parison to its DE counterpart. The RMSE for testing turned out to be
the least for 20 cases in ODE-NN approach whereas it was found to
be better only for four cases for DE-NN approach. Similarly it was
found that the training RMSE is least for sixteen cases for ODE-NN
and for rest eight cases DE-NN was found to be better. In some cases
even if the training error is less for DE-NN but the testing error is
better for ODE-NN.

As it is not possible to show the identification performance and
error curve for all the 24 cases given in Table 2, we have taken three
cases to analyze the mean-squared error and their performances.
From Fig. 9 it is clear that MSE of the proposed ODE-NN approach
is converging faster than DE-NN approach at the same time the
MSE of ODE-NN starting from a lower value, i.e. around 2.2 where
as for DE-NN it is starting from 2.9. Fig. 10 gives the identifica-
tion performance for DE-NN, ODE-NN and the actual output. As the
performance in Fig. 10 is not clear Fig. 11 gives a zoomed version
within time step 111–116 where it clearly shows that the ODE-NN
is having better identification capability than DE-NN approach.

Fig. 12 gives the mean-squared error for the input y(t − 4) and
u(t − 5). Here the we have considered 20 epochs because there was
no change in MSE after 20 epochs. In this case even if the ODE-NN
MSE starts from a higher value but it is converging to a lower value

Table 2
Comparison of training and testing errors.

Input Testing error (RMSE) Training error (RMSE)

DE ODE DE ODE

Example 1
y(k), y(k − 1) u(k) 0.0207 0.0190 0.1186 0.1137

Example 2
y(t − 1), u(t − 3) 0.4400 0.4194 0.1501 0.1411
y(t − 3), u(t − 4) 0.7838 0.7773 0.3402 0.2850
y(t − 2), u(t − 4) 0.6733 0.6602 0.3256 0.2898
y(t − 1), u(t − 2) 0.4906 0.6801 0.2909 0.2924
y(t − 1), u(t − 4) 0.5430 0.5132 0.2991 0.2926
y(t − 4), u(t − 4) 12.259 0.8894 0.3274 0.3428
y(t − 2), u(t − 3) 1.1340 0.7199 0.2968 0.3051
y(t − 1), u(t − 1) 0.6183 0.6056 0.4638 0.4151
y(t − 4), u(t − 3) 1.2405 1.2771 0.7266 0.4301
y(t − 1), u(t − 6) 0.8469 0.8410 0.6012 0.5661
y(t − 3), u(t − 3) 1.0067 1.0347 0.5172 0.5176
y(t − 2), u(t − 2) 0.9889 0.9753 0.6314 0.6261
y(t − 1), u(t − 5) 0.6873 0.6518 0.6220 0.6303
y(t − 4), u(t − 5) 1.0149 0.9698 0.7038 0.6373
y(t − 2), u(t − 1) 1.8368 1.2726 0.8934 0.6844
y(t − 2), u(t − 5) 0.9176 1.1808 0.7222 0.6804
y(t − 3), u(t − 5) 0.9536 1.0470 0.7138 0.7338
y(t − 3), u(t − 2) 1.8184 1.4138 0.8766 0.8600
y(t − 4), u(t − 6) 1.7628 1.4677 1.3988 1.1126
y(t − 2), u(t − 6) 1.3352 1.2639 1.6264 1.1945
y(t − 4), u(t − 2) 1.6725 1.6377 1.1799 1.1963
y(t − 3), u(t − 6) 27.468 1.4641 1.2063 1.2424
y(t − 3), u(t − 1) 1.7123 1.6475 1.5725 1.2702
y(t − 4), u(t − 1) 2.0821 2.0217 1.4250 1.4352

Fig. 9. Mean-squared error (y(t − 1), u(t − 3)).

Fig. 10. Identification performance (y((t − 1), u(t − 3)).
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Fig. 11. Identification performance (y(t − 1), u(t − 3)).

Fig. 12. Mean-squared error (y(t − 4), u(t − 5)).

in comparison to DE-NN approach. Fig. 13 gives the identification
performance for the input y(t − 4) and u(t − 5). The zoomed version
of the identification performance within time step 54–58 is shown
in Fig. 14.

Fig. 15 shows the MSE for the input y(t − 4) and u(t − 4). From
the figure it is clear that the MSE for ODE-NN is having higher
convergence speed but attending a slight lower value in compar-
ison to DE-NN approach, the numerical values are mentioned in
Table 2. Fig. 16 shows the identification performance for the input
y(t − 4) and u(t − 4) from which it is found even if the training error
for ODE-NN approach is slightly higfer than the DE-NN approach
but having much better identification capability in comparison to
DE-NN approach.

Fig. 13. Identification performance (y(t − 4), u(t − 5)).

Fig. 14. Identification performance (y(t − 4), u(t − 5)).

Fig. 15. Mean-squared error (y(t − 4), u(t − 4)).

Table 2 gives the comparison of training and testing root mean
square error (RMSE) for DE-NN and ODE-NN approaches. For the
first example it is found that the training and testing errors are
less for the proposed ODE-NN approach. From the table the results
marked in bold indicates less training and testing error for the cor-
responding input combinations. In Example 2 we have considered
all the possible input combinations, i.e. 24. It is found that the
testing error is less for 19 combinations of ODE-NN approach in
comparison to DE-NN approach. This shows the better identifica-
tion capability of the proposed hybrid approach.

Fig. 16. Identification performance (y(t − 4), u(t − 4)).



Author's personal copy

870 B. Subudhi, D. Jena / Applied Soft Computing 11 (2011) 861–871

Fig. 17. The laboratory set-up: TRMS system.

Fig. 18. Identification performance.

Example 3 (Twin Rotor MIMO System). The TRMS used in this work
is supplied by Feedback Instruments designed for control experi-
ments. Fig. 17 shows the TRMS setup which serves as a model of
the helicopter.

It consists of two rotors placed on a beam with a counterbalance.
These two rotors are driven by two D.C. motors. The main rotor pro-
duces a lifting force allowing the beam to rise vertically making the
rotation around the pitch axis. The tail rotor which is smaller than

Fig. 19. Cross-correlation of input and residuals.

Fig. 20. Auto-correlation of residuals.

Fig. 21. Cross-correlation of input square and residuals square.

the main rotor is used to make the beam turn left or right around
the yaw axis. Both the axis of either or both axis of rotation can
be locked by means of two locking screws provided for physically
restricting the horizontal and or vertical plane of the TRMS rota-
tion. Thus, the system permits both 1 and 2 DOF experiments. In
this work we have taken only the 1 DOF around the pitch axis and
identified the system using proposed method discussed in Section
6. The model has three inputs and eleven neurons in the hidden
layer. The inputs are the main rotor voltage at the present time v(t),
main rotor voltage at previous time v(t − 1) and the pitch angle of
the beam at previous time instants (t − 1). Fig. 18 shows the identi-

Fig. 22. Cross-correlation of residuals and input*residuals.
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fication performance of 1 degree of freedom (DOF) vertical ODE-NN
based model. The correlation analysis of the above model is given
in Figs. 19–22. If the residuals (model errors) contain no informa-
tion about past residuals or about the dynamics of the system, it is
likely that all information has been extracted from the training set
and the model approximates the system well. It is found that all
four correlation functions; cross-correlation of input and residuals
(Fig. 19), auto-correlation of residuals (Fig. 20), cross-correlation
of input square and residuals square (Fig. 21), cross-correlation of
residuals and input*residuals (Fig. 22) are within 95% of the con-
fidence band indicating that the model is adequate, i.e. the model
behavior is closed to the real system performance.

8. Conclusions

The paper has described the scope of improving system identifi-
cation of nonlinear systems by using proposed ODE-NN approach.
In the proposed identification frame work, ODE is used only to find
approximate values in the vicinity of the global minimum. These
approximate weight values are then used as starting values for a
faster convergence algorithm, i.e. Levenberg Marquardt algorithm.
From the results presented in Section 7, it is clear that there is cer-
tainly an improvement in identification performance for nonlinear
systems over the existing DE-NN approach. In comparison to use
of DE-NN approach proposed ODE-NN approach provides better
system identification performance in terms of speed of conver-
gence and identification capability. In comparison to DE method
ODE seems to provide advantage in terms of faster convergence
speed. The above-proposed ODE-NN approach is tested on a real-
time TRMS system. It is shown that the models obtained ODE-NN
methods can generally be considered adequate in representing the
system.
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