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Abstract

An approximate method based on the upper bound theory has been presented in order to investigate into non-axisymmetric metal extrusion
process. In this approach the deformation region is divided into a finite number of rigid tetrahedral blocks that slides with respect to one
another. The proposed method is successfully adapted to the extrusion of T-section bars from round billet through straight taper die.
Computation for the upper bound pressure is carried out for various process variables such as area reduction, die angle and interface friction.
The theoretical predictions are compared with that of known experimental results and found to be well within engineering accuracy.
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1. Introduction

Exact solutions are not available for many metal working
processes and several attempts have been made to propose
approximate methods which could be adopted for estimating
the loads required to cause plastic deformation. A large
number of approximate solutions are reported for the pre-
diction of working stress in drawing and extrusion under
plane-strain deformation and circular sections with axial
symmetry [1]. The analyses under these conditions are
relatively simple. However, in practice, non-circular sec-
tions, such as polygonal rods, channels, angles, etc. are also
commonly drawn or extruded. In such cases, the analysis is
more complicated. Furthermore, not many experimental
studies of the flow through the polygonal die have been
conducted. Therefore, the analysis of flow through a poly-
gonal converging die has been rarely tried.

Among various methods of solution, the upper bound
technique as an analytical method and finite element ana-
lysis as a numerical method have been widely used for the
analysis of the extrusion process effectively. Even though
the finite element method (FEM) gives detailed information,
it takes considerable computation time for three-dimensional
analysis, and this is not yet so practicable for optimising the
extrusion process. The upper bound technique appears to be

an useful tool for the analysis of three-dimensional metal
forming problems when the objective of such an analysis is
limited to prediction of the deformation load and/or to study
metal flow during the process.

Despite the increasing demands for three-dimensional
extrusion of arbitrarily shaped sections and advantage of
straightly converging dies, a few theoretical approaches to
the extrusion or drawing processes have been reported.
Juneja and Prakash [2] analysed the plastic flow of metal
through a converging die of any irregular cross-section, by
using an equilibrium approach. The analysis is based on the
assumption that the zones of plastic deformation is enclosed
by two cylindrical surfaces of velocity discontinuity, at entry
to and exit from the pyramidal portion of the die. Nagpal and
Altan [3] introduced the stream function to express three-
dimensional flow in the die and analysed the force of
extrusion from round billet to elliptical bars. Basily and
Sansome [4] made an upper bound analysis on drawing of
square sections from round billets by using triangular ele-
ments at entry and exit of the die. Yang and Lee [5]
formulated kinematically admissible velocity fields of billets
having generalised cross-section for the extrusion, where the
similarity in the profile of cross-section was assumed to be
maintained throughout deformation. Prakash and Khan [6]
made an upper bound analysis on extrusion and drawing
through dies of polygonal cross-sections with straight stream
lines, where the similarity in shape was presented. Boer et al.
[7] made an upper bound approach to drawing of square rod
from round bars, by employing a method of co-ordinate
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Nomenclature

Ay area of the billet cross-section

L length of each side of the approximating
polygon

m friction factor on the die surface

M number of sides of the approximating polygon

i unit vector normal to a surface

P,y average extrusion pressure

R billet radius

Si area of the ith face of the tetrahedral rigid
region

Sy area of jth face having friction between die
and work piece

AV velocity discontinuity

Vb billet velocity

w upper bound energy consumption

Greek letters

& components of strain rate tensor

0 internal angle of a polygon

K yield stress in simple shear

g9 yield stress in uniaxial tension or compression
T shear stress between billet and die

¢ total metal flow through a face

transformation. Gunasekera and Hosino [8] obtained an
upper bound solution for extrusion and drawing of square
sections from round billets through converging dies formed
by an envelope of straight lines. Yang et al. [9—11] derived
kinematically admissible velocity fields assuming proper
stream line functions. In addition to these, a number of
techniques are reported [12—14] to construct kinematically
admissible velocity field that leads to upper bound solution
of three-dimensional metal forming problems in general
and metal extrusion in particular. However, most of these
procedures have been used to-date to analyse extrusion
processes where billet and product sections are either
similar or can be described by a continuous analytical
function.

In the present study, the upper bound solutions for plane-
strain problem are modified and applied to three-dimen-
sional shape extrusion problems. Planer elementary rigid
region (PERR) concept of Johnson and Kudo [15] is
extended to solve non-axisymmetric extrusion problem from
round billet. The deformation zone is discretised into rigid
tetrahedral zone or so called, spatial elementary rigid region
(SERR) blocks. However, this is applicable to the problems
where the die walls are planer in nature. The objective of
the present study is to apply the reformulated SERR tech-
nique to the extrusion of T-section from round billet through
straightly converging die (Fig. 1) by approximating the
circular cross-section of the billet by regular polygon, the
number of sides of the polygon being successively increased
until the extrusion pressure converges. The effect of various
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Fig. 1. Sectional view of extrusion of T-section from round billet.

process variables such as area reduction, die angle and
interface friction on the working stress is studied.

2. SERR technique

In the SERR technique the volume of the solid is thought
of as being made up of rigid polyhedra, with the plastic
deformation localised on the faces of the same spatial
figures, but allowed to glide over one another while main-
taining contact. The polygon which divide the rigid adjacent
polyhedra, are referred to as faces of discontinuity or shear
planes. Such a scheme is an obvious generalisation of the
model used extensively in the limit analysis of plane plastic
deformation. The rigid motion inside each polyhedron due
to plastic flow of material, according to SERR method, is
described by a velocity vector consistent with the bounding
conditions. These velocity vectors can be defined through
their normal and tangential components with respect to
plane of discontinuity. The continuity condition will be
satisfied when the normal component of the velocities across
each discontinuity boundary are constant.

If §; is the area of the iy, face of the polyhedron of unit
outer normal 7; and ¢ is the total metal flow through its
faces, then

¢ =2 SiVii) =0 (1)

The tangential component of the motion/velocity at the
discontinuity planes suffers a sudden change which is
responsible for the sliding of one rigid block on another.
Thus, if there are N rigid blocks, then the number of
unknown internal velocity vectors is also N (thus, 3N spatial
velocity components). The velocity at entry to the deforma-
tion zone (the billet velocity) is considered to be prescribed
and the velocity at the exit has a single component since its
direction is known from the physical description of the
problem. Therefore, the total number of unknown velocity
components in the global level becomes 3N + 1. All these
unknown velocity components can be uniquely determined
if an equal number of equations are generated. This is done
by applying the mass continuity condition (otherwise known



as the volume constancy condition) to the bounding faces of
all the tetrahedral rigid blocks taken together. It may be
noted that the set of velocity equations so generated becomes
consistent and determinate if and only if the SERR blocks
are tetrahedral in shape, so that, the number of triangular
bounding faces automatically becomes 3N + 1.

The deformation zone in case of metal forming that occurs
in a closed channel (like extrusion or drawing), can be
subdivided into subzones that are prismatic, pyramidal or
tetrahedral in shape or a combination of these shapes. Since
the elementary blocks are to be tetrahedral in nature, the
prismatic or pyramidal subzones are ultimately discretised
into tetrahedrons. A pyramid can be discretised into two
tetrahedrons by dividing the quadrilateral base into two
triangles. Thus, there are two ways of discretising the
pyramid into two tetrahedral blocks. In a similar manner,
a prismatic subzone can be discretised into three tetrahe-
drons in six different ways.

3. Theoretical model

The model comprises the following assumptions:

(1) The material is rigid-plastic, and obeys the von Mises
yield criterion.

(2) The shear stress between tools and workpiece is
constant, T = mk = mao/v/3.

(3) The material is incompressible.

(4) The die and punch are rigid and not deformed.

(5) The length of deformation zone is equal to that of the die.

(6) The centroid of the die aperture lies on the billet axis.

(7) No dead metal zones are formed on the sides of the die
orifice.

As mentioned earlier, the SERR technique can be applied
where there are plane boundaries. Hence, the curved surface
is to be replaced by planer surfaces so as to accommodate
the SERR analysis. For the present analysis the round billet
is approximated by a 12-sided (as there is a negligible
change of final computed value by further increasing the
sides, Fig. 2) regular polygon. To approximate the circular
cross-section of the billet into a regular polygon, the cross-
sectional areas of the billet and the approximating polygon
must be maintained equal. This condition is written as

nR* = 1 ML? cot(10) (2)

Since, the T-section has one-fold symmetry, half of the
deformation zone (domain of interest) can be considered
for the analysis. The subzones of deformation can be
delineated in the domain of interest by taking suitably
located floating points (since its location is not known a
priori). Figs. 3-5 show one-half of deformation zone with
one, two and three floating points, respectively. For single
point formulation the floating point lies on the plane of
symmetry, both floating points lie on the plane of symmetry
in case of double point formulation and for triple point
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Fig. 2. Effect of number of sides of approximating polygon.

Fig. 4. Half of the deformation zone (double point formulation).



Fig. 5. Half of the deformation zone (triple point formulation).

formulation two on the plane of symmetry and third one at
an arbitrary position in the deformation zone. All the corner
points of the die orifice are joined to these floating points.
The resulting pyramid, prism and tetrahedrons are the
ultimate deformation subzone for the SERR formulation.
For an illustration, as shown in Fig. 3, the single point
formulation gives rise to five pyramids (15-1-2—-11-10, 15—
4-5-12-11, 15-12-13-6-5, 15-13-14-6-7, 15-7-8-9-14)
and two tetrahedrons (2-3-11-15, 3-4-11-15). Hence it
results in 12 tetrahedrons (SERR blocks) and the total
number of alternative ways it can be obtained is 32
(2 x 2 x 2 x 2 x 2). All these subzones are interconnected
and have common triangular faces. When continuity con-
dition is applied to all the 37 bounding faces of these 10
SERR blocks equal number of velocity equations can be
obtained for the respective formulation (details of discreti-
sation and subzones are summarised in Tables 1 and 2,
respectively). Though more number of subzones can be
generated adding further floating points, three points is
considered here as there is a marginal improvement of final
computed value by further increasing the number of points.

4. Application of the upper bound theorem

If surfaces of velocity discontinuities are to be included
and no body traction is taken into account, the actual

Table 1
Summary of discretisation schemes (M = 12)

Table 2
Details of subzones (M = 12)

Type of Formulation
subzones
Single point Double point Triple point
Prisms - 4-11-16-5-12-15 1-16-10-2-17-11,
5-17-12-6-16-13,
6-16-13-7-15-14
Pyramids 15-1-2-11-10, 16-1-2-11-10, 17-4-5-12-11,
15-4-5-12-11, 15-13-12-5-6, 15-7-14-9-8
15-12-13-6-5, 15-13-14-7-6,
15-13-14-6-7, 15-7-8-9-14
15-7-8-9-14
Tetrahedrons 2-3-11-15, 2-3-11-16, 2-3-11-17,
3-4-11-15 3-4-11-16 3-4-11-17

velocity field minimises the expression [16]:

W=W,+ W, + W 3)
where
200 8
Wp = ﬁ/v 58,:/‘8,']‘ dV
= work dissipated for internal deformation @
VVS = ‘L'/|AV,‘|dS,‘
Si
= work dissipated at surfaces of velocity discontinuity
)
Wf = MK |AVJ| dSﬁ
Sp
= work dissipated due to friction at die
—work piece interface (jth face) (6)

In the present formulations with a discontinuous velocity
field the strain rate components &;; are all zero inside the rigid
blocks. This leads to

W, =0 )

Since, velocity discontinuity IAV;l and IAV/| are constant over
all the faces, it can be written as

00
W:;EZNAW&+mMW%} (8)

Description Formulation

Single point

Double point Triple point

Type of subzones

No. of rigid blocks S5x242x1=12

No. of discretisation schemes 2x2x2x2x2=32

No. of planes 37

No. of unknown velocity components 12 x 3 =36 for 12 SERR + 1
at exit, total = 37

Five pyramids and two tetrahedrons

One prism, four pyramids
and two tetrahedrons

Three prisms, two pyramids
and two tetrahedrons
1x3+4x2+2x1=13 3x3+2x2+2x1=15
6x2x2x2x2=96 6X6x6x2x2=2864

40 46

13 x 3 =39 for 13 SERR + 1 15 x 3 =45 for 15 SERR + 1
at exit, total = 40 at exit, total = 46




The non-dimensional average extrusion pressure is can then
be written as

Py w
— )

oo AoVvoo

5. Computer program and optimisation parameters

The proposed model makes up the basis for a rapid,
user-friendly program written for personal computers. A
computer program is written in Fortran to make an upper
bound analysis for the extrusion of T-section. The flow
chart of the computer programme is shown in Fig. 6.
Conjugate direction method for multivariable optimisa-
tion is used to minimise the total upper bound power
with respect to the unknown co-ordinates of the floating
points.

For the triple point formulation, two floating points lies on
the plane of symmetry and third one at an arbitrary position
in the deformation zone. Thus, in total there are seven
undetermined co-ordinates, which serve as the optimisation
parameters to minimise the extrusion pressure. Similarly, it
is two and four for single point and double point formula-
tion, respectively. Here, it is to be noted that the length of
the die is taken as per the equivalent semi-cone angle. The
equivalent semi-cone angle is defined as the semi-cone angle
of a conical die where the reduction area is the same as that
of polygonal sections.

generation of

SERR blocks
T

[
set initial values

of floating points

calculation of upper| |modify values
bound power

of floating
points

modify
SERR
blocks

Fig. 6. Flow diagram of the computer program.

6. Results and discussion

All the 32, 96 and 864 discretisation schemes of single
point, double point and triple point formulation, respec-
tively, are checked to find out the optimum configuration.
The discretised deformation zone corresponding to the least
upper bound is named here as the optimum configuration. As
the triple point formulation gives the lowest (Table 3) value
all 864 schemes of discretisation of this formulation are
tested and the scheme giving the least upper bound is
identified. This optimum configuration is utilised for com-
putation of normalised extrusion pressure variation with
equivalent semi-cone angle in degrees and percentage of
area reduction at different friction factor (Figs. 7 and 8).
Fig. 8 exhibits that the optimal semi-cone angle which
requires minimal extrusion pressure increases with the
increase of friction. These results can be used to predict
the forming stress and optimal die shape for designing the
sectioned die, assessing the frictional condition either
through an empirical way or a simulation test. Comparison
of the present solution (at m = 0.35 and m = 0.00) is also
made with the experimental results of Chitkara and Adeyemi
[17] and Kar [18] at different area reductions (Fig. 9). It is
to be noted that, in those previously reported experiments
square billets of commercial lead are extruded through the
rough square dies.

This comparison shows that the proposed upper bound
method (UBM) reasonably can be used to model the non-
axisymmetric extrusion through the straightly converging
dies. This is so because the classical slip line field solution is
not applicable to this class of problems and the FEM is
constrained by computational difficulties to achieve accu-
racy in these cases. In this context, Kobayashi et al. [19]
remarks that the economic constraint becomes too severe in
three-dimensional metal flow analysis by FEM and suggest
that special considerations must be given to achieve a
balance between computational efficiency and solution
accuracy. They further suggest that the use of simplified
three-dimensional elements can be helpful in this regard, but
warn that the scope of using such elements is limited. It is
also interesting to note here that Lee et al. [13] compared the

Table 3
Comparison of results (M = 12,m = 0.3, semi-equivalent cone angle = 15°)
Area reduction (%) Formulation
Single point Double point Triple point
40 2.283 1.531 1.288
45 2.747 1.912 1.461
50 3.213 2.133 1.672
55 3.751 2.514 1.928
60 4.133 2.739 2.240
65 4.325 3.113 2.626
70 4914 3.624 3.123
75 5.587 4.361 3.773
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results obtained by the UBM, FEM and the weighted
residual method (WRM) with experimental data for extru-
sion of various sectional shapes at an area reduction of 60%.
They reported that the WRM, which is based on the velocity
field of the UBM they adopted, gives the lowest result at
relatively lower CPU time than the FEM. However, UBM is
the simplest even though the predicted load, as reported by
Lee et al. for the problems they solved, is about 9% higher
than that of FEM. Nonetheless, either the FEM or the WRM
has to be adopted when the stress field is needed from the
solution.

7. Conclusions

In the present work, a simple analytical upper bound
model is developed and it demonstrates that the proposed
method is powerful and efficient for the analysis of the
extrusion of section rods from round billet through straightly
converging dies. The optimal die-geometry (equivalent
semi-cone angle) which requires a minimal forming stress
at different reduction of areas and friction conditions can be
estimated reasonably using this technique. The results are in
good agreement with the experiments, and provide adequate
estimates of extrusion pressure needed for metal flow. It is
hoped that the present method can be extended to obtain
the solution of generalised problems of non-axisymmetric
extrusion or drawing through converging dies.
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