

DESIGN OF AN APPLICATION SPECIFIC INSTRUCTION

SET PROCESSOR USING LISA

Umakanta Nanda

Electronics and Communication Engineering

National Institute of Technology

Rourkela, India

uk_nanda@yahoo.co.in

Kamalakanta Mahapatra

Electronics and Communication Engineering

 National Institute of Technology

Rourkela, India

kmaha2@rediffmail.com

Abstract—A Digital Signal Processor with specific

instruction sets and meant for a specific application is

called as Application Specific Instruction set

Processor(ASIP). To design an ASIP many approaches

are available. However optimization of an ASIP becomes

handy if it is designed in a higher level of abstraction that

is higher than Register Transfer Level (RTL). Application

Description Languages (ADLs) are becoming popular

recently because of its quick and optimal design

convergence achievement capability during the design of

ASIPs. Several stages are required to design a processor

which are architecture design implementation, software

development, instruction and system verification.

Verification of such ASIPs at various design stages is a

tedious job to do. This paper presents the architecture

description of a simple DSP processor using ADL based

instruction set description. The design process is more

consistent after allowing maximum flexibility here.

Furthermore, it enables the design process in both

instruction and cycle accurate modes. The design process

of a three stage pipelined FIR Filter processor is

demonstrated as a case study. Further optimization can be

done with respect to resources by changing the LISA code

written in CoWare platform.

 Keywords- LISA, ASIP, RTL, Pipelining, FIR filter, HDL,

CoWare, Profiling

I. INTRODUCTION

 Recently Application Specific Digital Signal Processors

are considered to be an important member in the processor

family because of its flexibility and portability. The flexibility

of these processors can be achieved by many ADLs [1-2] like

LISA, EXPRESSION, MIMOLA etc. Different phases of

design of the processor are distributed among different

designers in their respective fields.

The authors gratefully acknowledge the financial support from Ministry
of Communication and Information Technology, Government Of India for

conducting this research. We also acknowledge the technical support of the

entire team of CoWare.

 There should be some type of communication between the

groups of design engineers or between the phases of the

design. Out of the above languages, LISA [3-4] is preferred in

most cases because of it’s software development and HDL

generation capability.

 VHDL and Verilog languages are widely used to design

and simulate a processor keeping in mind that it is to be

implemented finally for IC fabrication. But these models can

not be used for architecture exploration and optimization

especially to design cycle based or instruction level processor

simulation as the hardware implementation details are very

high which are not required for performance evaluation, cycle

based simulation and software verification[5-6].

 In this paper we have implemented the architecture of an

Embedded DSP processor using LISA [7] where the

description for each instruction of the instruction set (of that

specific architecture) is described properly in CoWare

platform. A brief description of LISA is presented in the next

section.

II. LISA

 Language for Instruction Set Architecture is very much

helpful to reduce the gap between the traditional design of a

processor using VHDL or Verilog and instruction set

languages for architecture exploration. The syntax of this

language is having so much flexibility to describe the

processor (RISC, VLIW, DSP, ASIPs, Special purpose co

processors) instruction set which includes complex pipelining.

 Generally the processor model that include LISA consists

of two sections. Those are Resource and Operation section [6].

Instruction resource is a register that is usually referred as the

instruction register. But the instruction resource can be a

memory location, an input pin array or a concatenation of a

multiple storage elements. Operation section describe the

complete transition function of the processor including

pipelining stages such as fetch, decode, execute and write

back.

USER
Text Box
International conference on Advanced Computing and Communication, May 3-4, 2010, Kanjirapally, Kerala, Page number: 206-210

 This section generally consists of three sub sections. Those

are behavior, syntax and coding. Behavior describes the

transition functions of the processor. Coding section depicts

the binary image of the instruction word and the syntax

section indicates the syntax of that particular instruction in

assembly programs.

 This language is more suitable with the processor designer

tool called CoWare [5] for its advanced and flexible features

such as,

 Automatic generation of synthesizable RTL with

both control and datapath.

 Accurate profiling capabilities for high speed

instruction set simulator.

 Compatible with extensively used synthesis tool like

SYNOPSYS and physical design tool like MAGMA.

Figure 1. Design tool flow of CoWare

 Software development tool generation like assembler,

linker, debugger, C- compiler.

 Integrated profiling [5,6] helps to optimize

instructions for the target architecture.

 Enables the design team to develop flexible and

reusable ASIPs rapidly.

The design flow of an ASIP is shown in the figure-1.

III. ARCHITECTURE DESIGN

 Two fields are used for the architecture design. A high

level language first describes the architecture. However for

implementation purpose hardware description languages [3]

are used to model the underlying hardware as shown in the

fig.2. It is an advantage to combine both the development

process and the HDL description. Here the LISA compiler can

generate both the of these.

 After design exploration and application design the target

architecture needs to be implemented which is discussed in

next section of this paper.

Figure 2. Exploration and implementation

IV. ARCHITECTURE IMPLEMENTATION

 The LISA compiler should derive all the necessary

information from the given LISA description since the

generated HDL model does not have any predefined

components. Then the generated HDL model can be compared

to the LISA model components as shown in the figure below.

 LISA memory model derives the memory

configuration which summarizes the registers and the

memory sets.

Figure 3. Comparision of HDL And LISA model

 Resource models [3] gives the idea about the

structure of the architecture such as pipeline stages

and pipeline registers.

 Functional units are either generated as empty frames

or with fully functionality depending on the HDL

language used.

 Coding information in the instruction set model and

the timing model results the decoders.

 Pipeline controller is also generated from the above.

 The designer will have full control over the generated

HDL model with all its components. The generated HDL

model can be analyzed with respect to power, area and time

constraints and the optimized HDL model can be replaced

with the handwritten HDL code written by the experienced

designers which will be done in future work.

V. IMPLEMENTATION RESULT

 A simple FIR filter with three stage pipelining is

implemented here with the help of LISA in Coware platform.

Then the resource section of this model has been optimized. A

major decrease in total architecture design time can be seen, as

the LISA model results from the design exploration phase.

 The software development tool suit includes assembler,

linker and simulator as well as a graphical debugger frontend.

The tools are the enhanced version of those tools used for

architecture exploration. The enhancements for the software

simulate the ability to graphically visualize the debugging

process of the application under test. The LISA debugger

frontend is a generic graphical user interface for the generated

LISA simulator as shown in the figure.

 It visualizes the internal state of simulation process. Here

the C source code, the disassembly of the application as well

as all the configured memories and registers (pipeline) are

displayed. In this frontend all contents can be changed at the

run time of the application. Tools like assembler and linker

can be enhanced in functionality as well. More than 30

assembler directives, labels and symbols are supported by the

assembler.

 The processor debugger provides extensive hardware and

software profiling capabilities. Operation profiling gives us

the information about Calls/Total which shows the proportion

of operation executions for a specific operation to all executed

operations.

Figure 4. LISA debugger window

Figure 5. Operation profiling window

𝐶𝑎𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

 Where all operations include Fetch, Decode and main also

which has not been shown in fig. 5.

 Calls/Max contains information containing the proportion

of the execution of a specific operation to the execution of the

LISA operation which has been executed the highest number

of times.

𝐶𝑎𝑙𝑙𝑠

𝑀𝑎𝑥
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

𝑀𝑎𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

These information can be shown graphically also.

 Resource profiling shows the access statistics for all

resources modeled with the resource specifier as one of

register, program counter and control register in the LISA

model as shown in the figure 6.

 Similarly memory profiling tells about the access statistics

for the memories contained in the processor model. This

model has the program memory range 0x0000 to 0x1111 and

data memory range 0x1111 to 0Xffff.

Figure 6. General Purpose Register window

 These profiling information is very much required to

optimize our design. This architecture was designed on the

respective abstraction level with LISA and software

development tools were generated successfully.

VI. OPTIMIZED IMPLEMENTATION RESULT

 Now we have optimized the FIR filter with respect to the

resources we used like,

 Data and program memory

 Instruction set

 Number of general purpose registers

 In the operation profiling we can see that the instructions

or operations like decr, alui, mac, alu1op, jmp, sub, and, or

and mov have not been called in our specific application. So

writing the behavioral code for these operations is not required

and the result will be unchanged.

Figure 7. Optimized profiling window

 In the optimized model we have less space allocated for

data and program memory. Program memory starts from

0x0000 to 0x0015 and Data memory starts from 0x0016 to

0x0042 reducing the area further.

 To reduce the resource section further we can take 16

general purpose registers (GPR) instead of 32 which will

reduce the area of our model.

VII. CONCLUSION

 This method of processor design facilitated changing the

model according to the instruction set provided for the

specific application and limited resources. Here we

implemented FIR filter architecture using LISA. Then the

same model was optimized with respect to resources like data

memory, program memory, instruction set and number of

general purpose registers.

 Our future work will focus on the generation of the RTL file

from which we can get the HDL model of the same

architecture. The automatic generation of pipelined functional

units of the ASIP with optimization in data path and resources

will be another interesting research work. Furthermore we can

analyze and compare the area, power and timing issues of our

 generated HDL model and the hand written model for the

same architecture.

REFERENCES

[1] Anupam Chattopadhaya, Arnab Sinha, Dandian Zhang, Rainer Leupers,

Gerd Ascheid, Henrich Meyr, ”Integrated Verification approach during
ADL driven processor design”, Microelectronics journal 40(2009), page

1111-1123.

[2] Welhua Sheng, Jianjiang Ceng, Manuel Hohenauer, Hanno
Scharwachter, Rainer Leupers, Henrich Meyr, Institute for Integrated

systems, Achen, Germany, ”A novel approach for fexible and consistent

ADL driven ASIP design”, DAC’04, June 7-11, 2004, San Diego,
California, USA.

[3] Andreas Hoffman, Member IEEE, Tim Kogel, Achim Nohl, Gunnar

Braun, Oliver Schliebush, Oliver Wahlen, Andreas Wieferink and
Henrich Meyr, Fello, IEEE, “A novel methodology for the design of

application specific instruction set processors (ASIPs) using a machine

description language”. IEEE transaction on Computer Aided Design of

integrated circuits and systems, vol-20, number 11, Nov.-2001.

[4] O. Schliebusch, A. Chattopadhayay, E M Witte, D Kammler, G.
Ascheid, R Leupers, H Meyr, ”Optimization techniques for ADL driven

RTL processor synthesis” in IEEE workshop on rapid system

prototyping(RSP), Montreal, Canada, June 2005.
[5] CoWare, The ESL design Leader reference manuals, Product version

V2007.1.2, June-2008.

[6] CoWare,inc,http://www.coware.com.

[7] U K Nanda, K K Mahapatra, ”Design of a pipelined FIR filter using
Application Description Language” , National Conference on Wireless
Communication and VLSI Design-2010, GEC, Gwalior, March 27-28,
2010.

