

A Fault Model for Testing the Access Control Policies using Classified Mutation

Operator

Suraj Sharma1 and Sanjay Kumar Jena2
1Computer Science & Engineering Department, National Institute of Technology Rourkela, Orissa, INDIA
2Computer Science & Engineering Department, National Institute of Technology Rourkela, Orissa, INDIA

1suraj.sine@gmail.com
2skjena@nitrkl.com

ABSTRACT

 In today’s scenario any multiuser system need to

implement access control for protecting its resources from
unauthorized access or damage. With the help of separate
policy specification language we can specify these access
control policies. However, it is challenging to specify a
correct access control policy and so, it is common for the
security of a system to be compromised because of the
incorrect specification of these policies. There are many
ways in which a policy can be checked for correctness like,
formal verification, analysis and testing. In this paper, a
testing framework called ACPC (Access Control Policy
Checker) has been introduced; we choose to illustrate the
above technique using XACML language. We conduct
extensive experiments using nine policy sets to evaluate the
effectiveness of the above technique. The experimental
result shows that ACPC can effectively generate requests to
achieve high structural coverage of policies and
outperforms random requests generation in terms of policy
structural coverage and fault-detection capability. We have
used nine mutation operators to make the mutant policy for
mutation testing. We found the better result by classify
these mutation operator in to three classes. We got up to
98% of mutant killed by one class of mutation operator,
these results shows that, above framework generates better
request sets and the classification gives better performance
in terms of computational cost.

Keywords
 Access control policies, change-impact analysis,
mutation operator, mutation testing, XACML

1. INTRODUCTION

 Any multiuser system need to implement access control
for protecting its resources from unauthorized access or
damage. Access control [5] is one of the fundamental
mechanisms for information system security and it is widely
used in operating systems, databases, networks, etc. All
these systems support different applications with multiple
users and every activity performed by a user or a process
must be checked to see if it is authorized. An access control
system determines what principals can access what
resources and when.
 Access control is traditionally enforced by directly hard
coding into a system. However, this is tedious and becomes

difficult for a large system. Also, this makes it hard to
accommodate changes of security requirements in a system.
Recently, access control system increasingly separate policy
from mechanisms. That is, an access control policy is
explicitly specified using certain policy languages. And a
system dynamically consults the policy to determine
whether an access request should be granted. The advantage
of this is that by separating policy from mechanism makes
it easier to specify the protection requirements to be
enforced on the system independent of the underlying
implementation details. Also, when the security
requirements on the system change later on, it is possible to
easily change the policy without affecting the underlying
mechanism implementing it. The ACPC is designed for
checking these access control policies specified for the
access control systems. The ACPC has two section; one for
generating request by changeimpact analysis tool and
second for testing these policies with the generated request
sets.
 The rest of the paper is organized as follows: Section 2
presents some related work in this area. Section 3 describes
the proposed framework. Simulation Results and
comparison with the existing method is in Section 4.

2. RELATED WORK

 There are various ways in which the quality of the policy
can be assured like, formal verification, analysis and
testing. Formal verification techniques can verify if a policy
satisfies a particular security property [11]. However, a
formal representation of the policy is not scalable and
properties about a policy do not exist in practice. Analysis
of policies can include semantic analysis like performing a
change impact analysis between two policies [2]. Testing is
one practical way for checking the correctness of a policy
specification. Semantic analysis techniques can be used
complementary to testing. Techniques [10] have been
proposed to leverage mutation testing to automatically
generation and/or reduce test sets for general purpose
programming languages. L. J. Morell [8] gives the brief
discussion in fault based testing for software that is used
frequently now a day. In [9] Martin and Xie have discussed
about test generation via Change –Impact Analysis.
 Martin, Xie, and Yu [3] have developed a random test
generation tool for XACML policies. The tests (requests)
are generated as a set of all combination of attributes found
in the policy. The tool represents this attribute as a bit

60

Mutant Killing rate(mk rate) α Correctness of the policy

vector and an attribute appears in the request only if the
corresponding bit in the vector is set to 1. The number of
requests to be generated can be user specified. To achieve
adequate coverage, even in a small request set, they modify
the random bit setting algorithm to ensure each bit is set at
least once. This method, though simple to implement is not
ensure that a policy is thoroughly tested.
 In our approach to policy testing, we generate policy
requests by the Chang-Impact analysis tool margrave [2]
and mutation testing method for testing the access control
policies.

3. PROPOSED FRAMEWORK

 ACPC (Access Control Policy Checker) is the proposed
model for testing the correctness of Access Control policies.
This model will work for the policies written in XACML
policy specification language and having two sections. First
section generates the request sets and the testing performs
in second section.
 Figure 1 shows the testing framework called ACPC
(Access Control Policy Checker) for testing the correctness
of policy. The input to the framework is the access control
policy that is to be tested. In the request generation process,
this policy is converted into derived policies and performing
the Change-Impact analysis. The output of this phase is the
request sets. In the policy checker phase, the input is
request sets, generated by request generation phase and the
policy for testing. In the policy checker phase mutation
operators is used for producing mutant (faulty) policy and
compare the response of mutation policy and original policy
against the same request. If the response is different we say
mutant has been killed otherwise not killed. Higher the
mutant killing rate higher the correctness of the policy
under test, so we can say:

Figure 1: ACPC (Access Control Policy Checker) Model

3.1 Request Generation Process

 To automatically generate high-quality test suites for
access control policies, we develop a novel framework based
on change-impact analysis [2]. We have referred different
paper regarding change-impact analysis for developing
Section 1. Figure 2 shows the Section 1 of the proposed
framework. The framework receives a set of policies under
test and outputs a set of request for policy authors to inspect
for correctness. The framework consists of three major
components: Derivation, Change-Impact analysis and
Request Generation. The key notion of the framework is to
derived two versions of the policy under test in such a way
that test coverage targets (e.g., certain policies, rules, or
conditions) are encoded as the differences of the two
derived versions. A change-impact analysis tool can then be
leveraged to generate counterexamples to witness these
differences. Based on the generated counterexamples, the
framework generates the request sets.

Figure 2: Request Generation Process Framework

3.1.1 Derivation

 Given the policy under test, the derivation component
derives the policy's versions, which are later fed to a
changeimpact analysis tool. Our goal is to formulate the
inputs to the change-impact analysis tool so that specifically
targeted parts of the policy under test are covered. We
provide two variants of version below called one-to-empty
and all-tonegate-one.

Figure 3: An example XACML policy

12th International Conference on Information Technology

61

 We discuss their analysis cost and the situations where
they may not work well. Although the framework has been
developed to support multiple policies, to simplify
illustration we describe the derivation variants with the case
of a single policy p that contains n rules.
 To further illustrate the framework, we provide a
concrete example of XACML [12] policy in Figure 3. An
XACML policy encodes rules in XML syntax. Each rule
has a set of constraints found in the Target elements that
must be satisfied by a request in order for that rule to be
applied.
This example policy has two rules: the first one denies
access requests for "dissemination" of the "demo:5"
resource and the second one permits all other access
requests. The first rule is defined by the Rule element on
Line 2 and the Target element on Lines 3-21. The second
rule is defined by the Rule element on Line 23. When
multiple rules can be applied on a request, the decision of
the first applicable rule will be returned (as specified by the
"first-applicable" rule combining algorithm on Line 1).
One-to-empty: For each rule r in p, the two synthesized
versions are an empty policy and a policy that contains only
r. If r is a permitting rule, the synthesized empty policy is
an empty denying policy. If r is a denying rule, the
synthesized empty policy is an empty permitting policy. The
reason for this mechanism is as follows. Comparing a
permitting rule r with an empty permitting policy will not
help generate requests to cover r because no
counterexamples are generated for these two versions.
Similarly, comparing a denying rule r with an empty
denying policy will not help generate requests to cover r.
This synthesis process is applied n times. So there are n
pairs of policy versions synthesized for p. Consider the
example policy written in XACML in Figure 3. The first
pair of policy versions synthesized for this policy is an
empty permitting policy and the original policy with Line
23 removed (i.e., the remaining rules). Applying change-
impact analysis on each pair has low cost because each
version contains only a single rule.
Note that this variant does not take into account the
interactions among different rules unlike the all-to-
negateone below.
All-to-negate-one: For each rule r in p, the two synthesized
versions are p and p where the decision of r is negated. This
process is applied n times so there are n pairs of policy
versions synthesized for p. Again, consider the example
policy in Figure 3. The first pair of policy versions
synthesized for this policy is the original policy and the
original policy with the effect on Line 2 changed to
"Permit". Applying change-impact analysis on each pair
has higher cost than the one-to-empty variant because the
analysis complexity is heavily dependent on the size of the
two versions rather than the differences between the two
versions. Note that this variant takes into account
interactions among different rules. This variant should be at
least as good as the one-to-empty variant in terms of
achieving policy structural coverage and fault detection but
it will have a higher computational cost, especially for

large, complex policies. The preceding two variants are
specifically developed for achieving high rule coverage.
Because the coverage of a rule implies the coverage of the
policy that contains the rule, our two variants also indirectly
target at achieving high policy coverage. In principle, we
can develop variants of version synthesis for achieving high
condition coverage by negating each condition one at a
time.

3.1.2 Change-impact analysis

 By supplying two versions of a policy, change-impact
analysis tool i.e. Margrave’s API [2,7] outputs

counterexamples that illustrate semantic differences
between the two policies. More specifically, each
counterexample represents a request that evaluates to a
different response when applied to the two policy versions.
For example, a particular request r evaluates to permit for
policy p but the same request evaluates to deny for policy p′.
Change-impact analysis is usually performed on mature
policies that are undergoing maintenance or updates to
avoid accidental injection of anomalies. In our case, we
exploit the functionality of change-impact analysis to
automatically generate request sets by iteratively
manipulating the inputs to a change-impact analysis tool.

3.1.3 Request Generator

 The counterexample generated by Margrave tool is in
the form of 0 and 1 with respect to corresponding attribute
values. The request generator generates the request with the
corresponding attributes whose value is 1 in the
counterexample. Exactly one request is generated from each
counterexample.

3.2 Policy Testing Process

 Mutation testing [8] has historically been applied to
general purpose programming languages. The program
under test is iteratively mutated to produce numerous
mutants, each containing one fault. A test input is
independently executed on the original program and each
mutant program. If the output of a test executed on a
mutant differs from the output of the same test executed on
the original program, then the fault is detected and the
mutant is said to be killed.
 An overview of our Section 2 of the framework for
policy mutation testing is illustrated in Figure 4.

Figure 4: Policy Mutation Testing Framework

A Fault Model for Testing the Access Control Policies using Classified Mutation Operator

60

 In the framework, we first define a set of mutation
operators. Given a policy and a set of mutation operators, a
mutator generates a number of mutant policies. Given a
request set, we evaluate each request in the request set on
both the original policy and a mutant policy. The request
evaluation produces two responses for the request based on
the original policy and the mutant policy, respectively. If
these two responses are different, then we determine that
the mutant is killed by the request; otherwise, the mutant is
not killed. This framework also consists of three major
components: Mutation Operator Handler, Mutant and
Original Policy Testing, Difference Checker.

3.2.1 Mutation Operator Handler

Mutation operators describe modification rules for
modifying access control policies to introduce faults into the
policies. Previous studies [1] have been conducted to
investigate the types and effectiveness of various mutation
operators for general-purpose programming languages;
however, these mutation operators often do not directly
apply to mutating policies. This section describes the
chosen mutation operators for XACML policies that
implement our fault model. An index of the mutation
operators is listed in Table 1 and their details are described
below. The first eight mutation operators emulate syntactic
faults because these mutation operators manipulate the
predicates found in the target and condition elements. In
particular, PSTT, PSTF, PTT, PTF, RTT, RTF, RCT and
RCF emulate syntactic faults as simple typos in the policy
set, policy, and rule target elements as well as the condition
elements which result in the predicates found in those
elements to always evaluate to true or false.

Table 1: Index of Mutation Operators

ID Description
PSTT The policy set is applied to all requests.
PSTF The policy set is not applied to any requests.
PTT The policy is applied to all requests.
PTF The policy is not applied to any requests.
RTT The rule is applied to all requests.
RTF The rule is not applied to any requests.
RCT The condition always evaluates to true.
RCF The condition always evaluated to false.
CRE The rule effect is inverted (e.g. permit for

deny).

 The last mutation operator CRE, emulate semantic faults
because they manipulate the logical constructs of XACML
policies.
Policy Set Target True (PSTT): Ensure that the policy set is
applied to all requests by removing the <Target> tag of
each PolicySet element.
Policy Set Target False (PSTT): Ensure that the policy set
is never applied to a request by modifying the <Target> tag
of each PolicySet element. The number of mutants created
by this operator is equal to the number of PolicySet
elements.

Policy Target True (PTT): Ensure that the policy is applied
to all requests simply by removing the <Target> tag of each
Policy element.
Policy Target False (PTF): Ensure that the policy is never
applied to a request by modifying the <Target> tag of each
Policy element.
Rule Target True (RTT): Ensure that the rule is applied to
all requests simply by removing the <Target> tag of each
Rule element.
Rule Target False (RTF): Ensure that the rule is never
applied to a request by modifying the <Target> tag of each
Rule element.
Rule Condition True (RCT): Ensure that the condition
always evaluates to True simply by removing the condition
of each Rule element. Rule Condition False (RCF): Ensure
that the condition always evaluates to False by
manipulating the condition value or the condition function.
Change Rule Effect (CRE): Invert each rule’s Effect by
changing Permit to Deny or Deny to Permit. The number of
mutants created by this operator is equal to the number of
rules in the policy. This operator should never create
equivalent mutants unless a rule is unreachable, a strong
indication of an error in the policy specification.
 These operators will pass in to Mutant module which
take the original policy and convert it into mutant policy.

3.2.2 Mutant and Original Policy Testing

 After getting the mutant policy generated by Mutation
Operator Handler, we need the response against all the
requests generated by Request Generation phase. Therefore,
we need the OASIS XACML tool for verification and
getting the response. The working principle of OASIS
XACML tool is; it gives the response when we provide
policy and request as input to the tool the output of the
OASIS XACML tool is the response in XACML language.
We use this principle for verifying the Mutant policy and
Original policy by supplying the same request set for
getting the response. This is very simple process and it
worked just like Access Control System.

3.2.3 Difference Checker

 The work of difference checker is very simple; it only
compares the response of the Mutant policies and Original
policy against same request set. It returns 1 if both the
response is different otherwise return 0. The mutant killing
rate is calculated by number of 1, if the number of 1 is more
we say that the mutant killing rate is more. We can
formulate the mutant killing rate as;

 Mutant Killing rate(mk rate)=

 The mk rate is easily calculated with the help of above
formula and by multiplying by 100 we can find the mutant
killing percentage (i.e. mk%).

4. SIMULATION RESULTS

 We used nine XACML policies collected from three
different sources as subjects in our experiment. Table 2
summarizes the basic statistics of each policy. The first

#Mutant
#Mutant Policies

12th International Conference on Information Technology

63

column shows the subject names. Columns 2-5 show the
numbers of policy sets, policies, rules, and conditions,
respectively. Four of the policies, namely codeA, codeB,
codeC, and codeD are examples used by Fisler et al. The
remaining policies are examples of real XACML policies
used by Fedora. Fedora is open source software that gives
organizations a flexible service-oriented architecture for
managing and delivering digital content.

Table 2: List of Policies used in the Experiment

Policy #Policy
Set

#Policy

#Rule

#Condition

codeA 5 2 2 0
codeB 11 5 5 0
codeC 8 4 4 0
codeD 11 5 5 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 1 2 12 10

 As we mentioned in the beginning the result is in the
form of comparison between the proposed approach
(change-impact method) and the random method of
generation of request. After that we proposed a
classification of mutation operator based on iterative
experiments which gives some better result. All this we will
see one by one further.

4.1 Fault Detection Capability Comparison

 Table 3 summarizes the two approaches of request
generation method by its mutant killing ability. Column 2
shows the number of mutant policy generated by the
Mutation Operator Handler. Columns 3-4 shows the mutant
killed and mutant killed% by request set generated by
random method, similarly columns 5-6 shows the mutant
killed and mutant killed% by request set generated by
change-impact analysis method.

Table 3: Mutant-kill result achieved by both methods

 Random Method Change-Impact

analysis Method
XACML

Policy

Mutant

Mutant

Kill

Mutant

kill %

Mutant

Kill

Mutant

kill %

codeA 64 20 31.25% 29 45.31%
codeB 92 33 35.87% 42 45.65%
codeC 112 50 44.64% 53 47.32%
codeD 148 55 37.16% 69 46.62%
default 2 157 10 6.37% 85 54.14%
demo -11 22 16 72.73% 16 72.73%
demo -26 17 09 52.94% 09 52.94%
demo-5 23 17 73.91% 19 82.61%
mod-fedora 157 35 22.29% 82 52.23%
average 41.90% 55.50%

It observed from the table that, the average mutant killing%
of change-impact analysis method is greater than the
random method. Some time the request generated by
random method is same as the change-impact analysis
method, in the row of demo-11 and demo-26 the killing% is
same. But in the case of default-2 there is the huge change,
it varies from 6.37% to 54.14%. We can say that our
method works well in all the cases and gives good result
compare to random method. The graph between sample
XACML policies and mutant kill percentage by both
methods are shown in Figure 5, the difference between
random and change-impact method is clearly visible in the
graph.

Figure 5: Comparison between Random and Change-
Impact
method

4.2 Fault Detection by Individual Mutation Operators

 Figure 6 shows the mutant kill % with respect to each
mutation operator for all nine sample policies. In this result
we found the variation in proposed method (Change-impact
method) and random method. Now by doing the further
experiment we found some better result after classify the
mutation operator, describe in the further section.

Figure 6: Fault detection of all policies by individual
mutation operator

4.3 Classified Mutation Operators

 The mutation operators can be classified based on the
policy element on which the mutation operation is
performed. They can be classified as,

A Fault Model for Testing the Access Control Policies using Classified Mutation Operator

60

Policy Set Mutation Operators: These represent the
mutation operations that can be done at the policy set level.

ID Description
PTT Policy Target True
PTF Policy Target False

Policy Mutation Operators: These represent the mutation
operations that can be done at the policy level.

ID Description
PSTT Policy set Target True
PSTF Policy Set Target False

Rule Mutation Operators: These represent the mutation
operations that can be done at the rule level.

ID Description
PTT Policy Target True
PTF Policy Target False
RCT Rule Condition True
RCF Rule Condition False
CRE Change Rule Effect

The result is in the form of graph shows Figure 7, the Rule
mutation operator gives higher mutant killing percentage
than Policy Set mutation operator and Rule mutation
operator. The conclusion is that the mutation operator that
we have chosen, that is the Rule mutation operator, works
well and with the help of these five mutation operator we
can perform the policy testing, which gives the approximate
same result as with the combined mutation operator, but
take less computational cost. In the graph we get up to
98.14% of mutant killed by the Rule mutation operator.
These entire mutant kill percentages are for the request sets
generated by the proposed method.

Figure 7: Mutant-killing ratio by different class of
operators

5. CONCLUSION

 We evaluate the proposed framework of policy testing
with nine XACML policies. We perform mutation testing
on the policy and the generated request set and compares
our results with the existing technique. The mutant kill
percentage of the proposed framework is as good as or

better than existing techniques. Also, the results indicate
that the mutants created by the rule mutation operators have
more kill percentage than other classes of operators. This
shows that the use of the policy program for generating test
cases is able to capture fine errors created by mutants. We
got up to
98% of mutant killed by the rule mutation operator and this
classification gives better performance in terms of
computational cost.

6. REFERENCES

[1] A. J. Offutt R. Geist and F. c. Harris. Estimation and
enhancement of real-time software reliability through
mutation analysis. IEEE Transactions on Computers,
41(5): pages 55-558, 1992.

[2] L. A. Meyerovich K. Fisler, S. Krishnamurthi and M.
C. Tschantz. Verification and change-impact analysis
of access-control policies. In Proc. 27th International
Conference on Software Engineering, pages 196-205,
2005.

[3] T. Xie E. Martin and T. Yu. Defining and measuring
policy coverage in testing access control policies. In
Proc. 8th International Conference on Information
and Communications Security, December 2006.

[4] R. S. Sandhu and P. Samarati. Access control:
Principles and Practice. IEEE Communications,
32(9):pages 40-48, September 1996.

[5] Messaoud Benantar. Access Control Systems:
security, Identity Management and Trust Models.
Springer, 2008.

[6] R. Sandhu S. Osborn and Q. Munawer. Configuring
role-based access control to enforce mandatory and
discretionary access control policies. ACM
Transactions on Information and System Security,
3(2): pages 85-106, May 2000.

[7] R. A. DeMillo and A. J. Offutt. Constraint-based
automatic test data generation. IEEE Transaction
Software Engineering, 17(9): pages 900-910, 1991.

[8] L. J. morell. A theory of fault-based testing. IEEE
Transaction Software Engineering, 16(8): pages844-
857, August 1990.

[9] E.Martin and T.Xie.Automated Test Generation for
Access Control Policies via Change-Impact Analysis.
In Proceeding of the 3rd International Workshop on
Software Engineering for Secure Syetems (SESS
2007), Minneapolis, MN, pp 5-11, May 2007.

[10] X. Zhang T. Jaeger and A. Edwards. Policy
management using access control spaces. ACM
Transactions on Information and System Security
(TISSEC), 6(3): pages 327-364, August 2003.

[11] G. Hughes and T. Bultan. Automated verification of
access control policies. Technical Report 2004,
Department of Computer Science, University of
California, Santa Barbara, 2004.

[12] OASIS eXtensible Access Control Markup Language
XACML.
http://www.oasisopen.org/committees/xacml, 2005.

12th International Conference on Information Technology

65

