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ABSTRACT 

      In today’s scenario any multiuser system need to 

implement access control for protecting its resources from 
unauthorized access or damage. With the help of separate 
policy specification language we can specify these access 
control policies. However, it is challenging to specify a 
correct access control policy and so, it is common for the 
security of a system to be compromised because of the 
incorrect specification of these policies. There are many 
ways in which a policy can be checked for correctness like, 
formal verification, analysis and testing. In this paper, a 
testing framework called ACPC (Access Control Policy 
Checker) has been introduced; we choose to illustrate the 
above technique using XACML language. We conduct 
extensive experiments using nine policy sets to evaluate the 
effectiveness of the above technique. The experimental 
result shows that ACPC can effectively generate requests to 
achieve high structural coverage of policies and 
outperforms random requests generation in terms of policy 
structural coverage and fault-detection capability. We have 
used nine mutation operators to make the mutant policy for 
mutation testing. We found the better result by classify 
these mutation operator in to three classes. We got up to 
98% of mutant killed by one class of mutation operator, 
these results shows that, above framework generates better 
request sets and the classification gives better performance 
in terms of computational cost. 
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1. INTRODUCTION 

     Any multiuser system need to implement access control 
for protecting its resources from unauthorized access or 
damage. Access control [5] is one of the fundamental 
mechanisms for information system security and it is widely 
used in operating systems, databases, networks, etc. All 
these systems support different applications with multiple 
users and every activity performed by a user or a process 
must be checked to see if it is authorized. An access control 
system determines what principals can access what 
resources and when. 
     Access control is traditionally enforced by directly hard 
coding into a system. However, this is tedious and becomes 

difficult for a large system. Also, this makes it hard to 
accommodate changes of security requirements in a system. 
Recently, access control system increasingly separate policy 
from mechanisms. That is, an access control policy is 
explicitly specified using certain policy languages. And a 
system dynamically consults the policy to determine 
whether an access request should be granted. The advantage 
of this is that by separating policy from mechanism makes 
it easier to specify the protection requirements to be 
enforced on the system independent of the underlying 
implementation details. Also, when the security 
requirements on the system change later on, it is possible to 
easily change the policy without affecting the underlying 
mechanism implementing it. The ACPC is designed for 
checking these access control policies specified for the 
access control systems. The ACPC has two section; one for 
generating request by changeimpact analysis tool and 
second for testing these policies with the generated request 
sets. 
     The rest of the paper is organized as follows: Section 2 
presents some related work in this area. Section 3 describes 
the proposed framework. Simulation Results and 
comparison with the existing method is in Section 4. 
  
2. RELATED WORK 

     There are various ways in which the quality of the policy 
can be assured like, formal verification, analysis and 
testing. Formal verification techniques can verify if a policy 
satisfies a particular security property [11]. However, a 
formal representation of the policy is not scalable and 
properties about a policy do not exist in practice. Analysis 
of policies can include semantic analysis like performing a 
change impact analysis between two policies [2]. Testing is 
one practical way for checking the correctness of a policy 
specification. Semantic analysis techniques can be used 
complementary to testing. Techniques [10] have been 
proposed to leverage mutation testing to automatically 
generation and/or reduce test sets for general purpose 
programming languages. L. J. Morell [8] gives the brief 
discussion in fault based testing for software that is used 
frequently now a day. In [9] Martin and Xie have discussed 
about test generation via Change –Impact Analysis. 
     Martin, Xie, and Yu [3] have developed a random test 
generation tool for XACML policies. The tests (requests) 
are generated as a set of all combination of attributes found 
in the policy. The tool represents this attribute as a bit 
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vector and an attribute appears in the request only if the 
corresponding bit in the vector is set to 1. The number of 
requests to be generated can be user specified. To achieve 
adequate coverage, even in a small request set, they modify 
the random bit setting algorithm to ensure each bit is set at 
least once. This method, though simple to implement is not 
ensure that a policy is thoroughly tested. 
     In our approach to policy testing, we generate policy 
requests by the Chang-Impact analysis tool margrave [2] 
and mutation testing method for testing the access control 
policies. 
 

3. PROPOSED FRAMEWORK 

     ACPC (Access Control Policy Checker) is the proposed 
model for testing the correctness of Access Control policies. 
This model will work for the policies written in XACML 
policy specification language and having two sections. First 
section generates the request sets and the testing performs 
in second section. 
     Figure 1 shows the testing framework called ACPC 
(Access Control Policy Checker) for testing the correctness 
of policy. The input to the framework is the access control 
policy that is to be tested. In the request generation process, 
this policy is converted into derived policies and performing 
the Change-Impact analysis. The output of this phase is the 
request sets. In the policy checker phase, the input is 
request sets, generated by request generation phase and the 
policy for testing. In the policy checker phase mutation 
operators is used for producing mutant (faulty) policy and 
compare the response of mutation policy and original policy 
against the same request. If the response is different we say 
mutant has been killed otherwise not killed. Higher the 
mutant killing rate higher the correctness of the policy 
under test, so we can say: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ACPC (Access Control Policy Checker) Model 

 

 

 

3.1 Request Generation Process 

     To automatically generate high-quality test suites for 
access control policies, we develop a novel framework based 
on change-impact analysis [2]. We have referred different 
paper regarding change-impact analysis for developing 
Section 1. Figure 2 shows the Section 1 of the proposed 
framework. The framework receives a set of policies under 
test and outputs a set of request for policy authors to inspect 
for correctness. The framework consists of three major 
components: Derivation, Change-Impact analysis and 
Request Generation. The key notion of the framework is to 
derived two versions of the policy under test in such a way 
that test coverage targets (e.g., certain policies, rules, or 
conditions) are encoded as the differences of the two 
derived versions. A change-impact analysis tool can then be 
leveraged to generate counterexamples to witness these 
differences. Based on the generated counterexamples, the 
framework generates the request sets. 
 

 

 

 

 

 

 

 

 

 

Figure 2: Request Generation Process Framework 

3.1.1 Derivation 

     Given the policy under test, the derivation component 
derives the policy's versions, which are later fed to a 
changeimpact analysis tool. Our goal is to formulate the 
inputs to the change-impact analysis tool so that specifically 
targeted parts of the policy under test are covered. We 
provide two variants of version below called one-to-empty 
and all-tonegate-one.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: An example XACML policy   
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     We discuss their analysis cost and the situations where 
they may not work well. Although the framework has been 
developed to support multiple policies, to simplify 
illustration we describe the derivation variants with the case 
of a single policy p that contains n rules. 
     To further illustrate the framework, we provide a 
concrete example of XACML [12] policy in Figure 3. An 
XACML policy encodes rules in XML syntax. Each rule 
has a set of constraints found in the Target elements that 
must be satisfied by a request in order for that rule to be 
applied. 
This example policy has two rules: the first one denies 
access requests for "dissemination" of the "demo:5" 
resource and the second one permits all other access 
requests. The first rule is defined by the Rule element on 
Line 2 and the Target element on Lines 3-21. The second 
rule is defined by the Rule element on Line 23. When 
multiple rules can be applied on a request, the decision of 
the first applicable rule will be returned (as specified by the 
"first-applicable" rule combining algorithm on Line 1). 
One-to-empty: For each rule r in p, the two synthesized 
versions are an empty policy and a policy that contains only 
r. If r is a permitting rule, the synthesized empty policy is 
an empty denying policy. If r is a denying rule, the 
synthesized empty policy is an empty permitting policy. The 
reason for this mechanism is as follows. Comparing a 
permitting rule r with an empty permitting policy will not 
help generate requests to cover r because no 
counterexamples are generated for these two versions. 
Similarly, comparing a denying rule r with an empty 
denying policy will not help generate requests to cover r. 
This synthesis process is applied n times. So there are n 
pairs of policy versions synthesized for p. Consider the 
example policy written in XACML in Figure 3. The first 
pair of policy versions synthesized for this policy is an 
empty permitting policy and the original policy with Line 
23 removed (i.e., the remaining rules). Applying change-
impact analysis on each pair has low cost because each 
version contains only a single rule. 
Note that this variant does not take into account the 
interactions among different rules unlike the all-to-
negateone below. 
All-to-negate-one: For each rule r in p, the two synthesized 
versions are p and p where the decision of r is negated. This 
process is applied n times so there are n pairs of policy 
versions synthesized for p. Again, consider the example 
policy in Figure 3. The first pair of policy versions 
synthesized for this policy is the original policy and the 
original policy with the effect on Line 2 changed to 
"Permit". Applying change-impact analysis on each pair 
has higher cost than the one-to-empty variant because the 
analysis complexity is heavily dependent on the size of the 
two versions rather than the differences between the two 
versions. Note that this variant takes into account 
interactions among different rules. This variant should be at 
least as good as the one-to-empty variant in terms of 
achieving policy structural coverage and fault detection but 
it will have a higher computational cost, especially for 

large, complex policies. The preceding two variants are 
specifically developed for achieving high rule coverage. 
Because the coverage of a rule implies the coverage of the 
policy that contains the rule, our two variants also indirectly 
target at achieving high policy coverage. In principle, we 
can develop variants of version synthesis for achieving high 
condition coverage by negating each condition one at a 
time. 

3.1.2 Change-impact analysis 

     By supplying two versions of a policy, change-impact 
analysis tool i.e. Margrave’s API [2,7] outputs 

counterexamples that illustrate semantic differences 
between the two policies. More specifically, each 
counterexample represents a request that evaluates to a 
different response when applied to the two policy versions. 
For example, a particular request r evaluates to permit for 
policy p but the same request evaluates to deny for policy p′. 
Change-impact analysis is usually performed on mature 
policies that are undergoing maintenance or updates to 
avoid accidental injection of anomalies. In our case, we 
exploit the functionality of change-impact analysis to 
automatically generate request sets by iteratively 
manipulating the inputs to a change-impact analysis tool. 

3.1.3 Request Generator 

     The counterexample generated by Margrave tool is in 
the form of 0 and 1 with respect to corresponding attribute 
values. The request generator generates the request with the 
corresponding attributes whose value is 1 in the 
counterexample. Exactly one request is generated from each 
counterexample. 

3.2 Policy Testing Process 

     Mutation testing [8] has historically been applied to 
general purpose programming languages. The program 
under test is iteratively mutated to produce numerous 
mutants, each containing one fault. A test input is 
independently executed on the original program and each 
mutant program. If the output of a test executed on a 
mutant differs from the output of the same test executed on 
the original program, then the fault is detected and the 
mutant is said to be killed. 
     An overview of our Section 2 of the framework for 
policy mutation testing is illustrated in Figure 4. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Policy Mutation Testing Framework 
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     In the framework, we first define a set of mutation 
operators. Given a policy and a set of mutation operators, a 
mutator generates a number of mutant policies. Given a 
request set, we evaluate each request in the request set on 
both the original policy and a mutant policy. The request 
evaluation produces two responses for the request based on 
the original policy and the mutant policy, respectively. If 
these two responses are different, then we determine that 
the mutant is killed by the request; otherwise, the mutant is 
not killed. This framework also consists of three major 
components: Mutation Operator Handler, Mutant and 
Original Policy Testing, Difference Checker. 

3.2.1 Mutation Operator Handler 

Mutation operators describe modification rules for 
modifying access control policies to introduce faults into the 
policies. Previous studies [1] have been conducted to 
investigate the types and effectiveness of various mutation 
operators for general-purpose programming languages; 
however, these mutation operators often do not directly 
apply to mutating policies. This section describes the 
chosen mutation operators for XACML policies that 
implement our fault model. An index of the mutation 
operators is listed in Table 1 and their details are described 
below. The first eight mutation operators emulate syntactic 
faults because these mutation operators manipulate the 
predicates found in the target and condition elements. In 
particular, PSTT, PSTF, PTT, PTF, RTT, RTF, RCT and 
RCF emulate syntactic faults as simple typos in the policy 
set, policy, and rule target elements as well as the condition 
elements which result in the predicates found in those 
elements to always evaluate to true or false. 

 

Table 1: Index of Mutation Operators 
 

ID Description 
PSTT The policy set is applied to all requests. 
PSTF The policy set is not applied to any requests. 
PTT The policy is applied to all requests. 
PTF The policy is not applied to any requests. 
RTT The rule is applied to all requests. 
RTF The rule is not applied to any requests. 
RCT The condition always evaluates to true. 
RCF The condition always evaluated to false. 
CRE The rule effect is inverted (e.g. permit for 

deny). 
 
     The last mutation operator CRE, emulate semantic faults 
because they manipulate the logical constructs of XACML 
policies. 
Policy Set Target True (PSTT): Ensure that the policy set is 
applied to all requests by removing the <Target> tag of 
each PolicySet element. 
Policy Set Target False (PSTT): Ensure that the policy set 
is never applied to a request by modifying the <Target> tag 
of each PolicySet element. The number of mutants created 
by this operator is equal to the number of PolicySet 
elements. 

Policy Target True (PTT): Ensure that the policy is applied 
to all requests simply by removing the <Target> tag of each 
Policy element. 
Policy Target False (PTF): Ensure that the policy is never 
applied to a request by modifying the <Target> tag of each 
Policy element. 
Rule Target True (RTT): Ensure that the rule is applied to 
all requests simply by removing the <Target> tag of each 
Rule element. 
Rule Target False (RTF): Ensure that the rule is never 
applied to a request by modifying the <Target> tag of each 
Rule element. 
Rule Condition True (RCT): Ensure that the condition 
always evaluates to True simply by removing the condition 
of each Rule element. Rule Condition False (RCF): Ensure 
that the condition always evaluates to False by 
manipulating the condition value or the condition function. 
Change Rule Effect (CRE): Invert each rule’s Effect by 
changing Permit to Deny or Deny to Permit. The number of 
mutants created by this operator is equal to the number of 
rules in the policy. This operator should never create 
equivalent mutants unless a rule is unreachable, a strong 
indication of an error in the policy specification. 
     These operators will pass in to Mutant module which 
take the original policy and convert it into mutant policy. 

3.2.2 Mutant and Original Policy Testing 

     After getting the mutant policy generated by Mutation 
Operator Handler, we need the response against all the 
requests generated by Request Generation phase. Therefore, 
we need the OASIS XACML tool for verification and 
getting the response. The working principle of OASIS 
XACML tool is; it gives the response when we provide 
policy and request as input to the tool the output of the 
OASIS XACML tool is the response in XACML language. 
We use this principle for verifying the Mutant policy and 
Original policy by supplying the same request set for 
getting the response. This is very simple process and it 
worked just like Access Control System. 

3.2.3 Difference Checker 

     The work of difference checker is very simple; it only 
compares the response of the Mutant policies and Original 
policy against same request set. It returns 1 if both the 
response is different otherwise return 0. The mutant killing 
rate is calculated by number of 1, if the number of 1 is more 
we say that the mutant killing rate is more. We can 
formulate the mutant killing rate as; 
 
         Mutant Killing rate(mk rate)= 
      
 
     The mk rate is easily calculated with the help of above 
formula and by multiplying by 100 we can find the mutant 
killing percentage (i.e. mk%). 
 

4. SIMULATION RESULTS 

     We used nine XACML policies collected from three 
different sources as subjects in our experiment. Table 2 
summarizes the basic statistics of each policy. The first 

#Mutant 
#Mutant Policies 
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column shows the subject names. Columns 2-5 show the 
numbers of policy sets, policies, rules, and conditions, 
respectively. Four of the policies, namely codeA, codeB, 
codeC, and codeD are examples used by Fisler et al. The 
remaining policies are examples of real XACML policies 
used by Fedora. Fedora is open source software that gives 
organizations a flexible service-oriented architecture for 
managing and delivering digital content. 
 

Table 2: List of Policies used in the Experiment 
 

Policy #Policy 
Set 

#Policy 
 

#Rule 
 

#Condition 
 

codeA 5 2 2 0 
codeB 11 5 5 0 
codeC 8 4 4 0 
codeD 11 5 5 0 
default-2 1 13 13 12 
demo-11 0 1 3 4 
demo-26 0 1 2 2 
demo-5 0 1 3 4 
mod-fedora 1 1 2 12 10 

 
     As we mentioned in the beginning the result is in the 
form of comparison between the proposed approach 
(change-impact method) and the random method of 
generation of request. After that we proposed a 
classification of mutation operator based on iterative 
experiments which gives some better result. All this we will 
see one by one further. 

4.1 Fault Detection Capability Comparison 

     Table 3 summarizes the two approaches of request 
generation method by its mutant killing ability. Column 2 
shows the number of mutant policy generated by the 
Mutation Operator Handler. Columns 3-4 shows the mutant 
killed and mutant killed% by request set generated by 
random method, similarly columns 5-6 shows the mutant 
killed and mutant killed% by request set generated by 
change-impact analysis method. 
 

Table 3: Mutant-kill result achieved by both methods 
 
 Random Method Change-Impact 

analysis Method 
XACML 

Policy 

# 

Mutant 
 

# 

Mutant 

Kill 

Mutant 

kill % 
 

# 

Mutant 

Kill 

Mutant 

kill % 

codeA  64  20  31.25%  29  45.31% 
codeB  92  33  35.87%  42  45.65% 
codeC  112  50  44.64%  53  47.32% 
codeD  148  55  37.16%  69  46.62% 
default 2 157  10 6.37%  85 54.14% 
demo -11 22  16 72.73%  16 72.73% 
demo -26 17  09 52.94%  09 52.94% 
demo-5  23  17  73.91%  19  82.61% 
mod-fedora 157  35  22.29%  82 52.23% 
average   41.90%   55.50% 
      
 
 

It observed from the table that, the average mutant killing% 
of change-impact analysis method is greater than the 
random method. Some time the request generated by 
random method is same as the change-impact analysis 
method, in the row of demo-11 and demo-26 the killing% is 
same. But in the case of default-2 there is the huge change, 
it varies from 6.37% to 54.14%. We can say that our 
method works well in all the cases and gives good result 
compare to random method. The graph between sample 
XACML policies and mutant kill percentage by both 
methods are shown in Figure 5, the difference between 
random and change-impact method is clearly visible in the 
graph. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison between Random and Change-
Impact 
method 

4.2 Fault Detection by Individual Mutation Operators 

     Figure 6 shows the mutant kill % with respect to each 
mutation operator for all nine sample policies. In this result 
we found the variation in proposed method (Change-impact 
method) and random method. Now by doing the further 
experiment we found some better result after classify the 
mutation operator, describe in the further section. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6: Fault detection of all policies by individual 
mutation operator 

4.3 Classified Mutation Operators                                                              

      The mutation operators can be classified based on the 
policy element on which the mutation operation is 
performed. They can be classified as, 
 

 

A Fault Model for Testing the Access Control Policies using Classified Mutation Operator 

60



Policy Set Mutation Operators: These represent the 
mutation operations that can be done at the policy set level. 

ID Description 
PTT Policy Target True 
PTF Policy Target False 

 
Policy Mutation Operators: These represent the mutation 
operations that can be done at the policy level. 

ID Description 
PSTT  Policy set Target True 
PSTF  Policy Set Target False 

 
Rule Mutation Operators: These represent the mutation 
operations that can be done at the rule level. 

ID Description 
PTT Policy Target True 
PTF Policy Target False 
RCT  Rule Condition True 
RCF  Rule Condition False 
CRE  Change Rule Effect 

 
The result is in the form of graph shows Figure 7, the Rule 
mutation operator gives higher mutant killing percentage 
than Policy Set mutation operator and Rule mutation 
operator. The conclusion is that the mutation operator that 
we have chosen, that is the Rule mutation operator, works 
well and with the help of these five mutation operator we 
can perform the policy testing, which gives the approximate 
same result as with the combined mutation operator, but 
take less computational cost. In the graph we get up to 
98.14% of mutant killed by the Rule mutation operator. 
These entire mutant kill percentages are for the request sets 
generated by the proposed method. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Mutant-killing ratio by different class of 
operators 
 

5. CONCLUSION 

     We evaluate the proposed framework of policy testing 
with nine XACML policies. We perform mutation testing 
on the policy and the generated request set and compares 
our results with the existing technique. The mutant kill 
percentage of the proposed framework is as good as or 

better than existing techniques. Also, the results indicate 
that the mutants created by the rule mutation operators have 
more kill percentage than other classes of operators. This 
shows that the use of the policy program for generating test 
cases is able to capture fine errors created by mutants. We 
got up to 
98% of mutant killed by the rule mutation operator and this 
classification gives better performance in terms of 
computational cost. 
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