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Abstract 

The objective of this study is to design multi-layer perceptron artificial neural 

network (ANN) architecture in order to predict the fatigue life along with different 

retardation parameters under constant amplitude loading interspersed with mode-I 

overload. Fatigue crack growth tests were conducted on two aluminum alloys 7020-T7 

and 2024-T3 at various overload ratios using single edge notch tension specimens. The 

experimental data sets were used to train the proposed ANN model to predict the output 

for new input data sets (not included in the training sets). The model results were 

compared with experimental data and also with Wheeler’s model. It was observed that 

the model slightly over-predicts the fatigue life with maximum error of + 4.0 % under the 

tested loading conditions 
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Nomenclature 
 
a                                  crack length measured from edge of the specimen  (mm) 

ai                                             crack length corresponding to the ‘ith’ step (mm) 

aj                                            crack length corresponding to the ‘jth’ step (mm) 

aol                               crack length at overload (mm) 

ad                                retarded crack length (mm) 
A
da                               retarded (ANN) crack length (mm) 

E
da                               retarded (experimental) crack length (mm) 

W
da                               retarded (Wheeler) crack length (mm) 

B                                 plate thickness (mm) 

C                                 constant in the Paris equation 

COD                           crack opening displacement 

‘cgr’                            crack growth rate 

( )
ipC                            retardation parameter 

da/dN                          crack growth rate (mm/cycle) 

(da/dN)retarded              retarded crack growth rate (mm/cycle) 

E                                 modulus of elasticity (MPa) 

Err                               sum-squared error 

f(g)                              geometrical factor 

f(.)                               activation function 

F                                 remotely applied load (N) 

K                                stress intensity factor ( mMPa ) 

KIC                                        plane strain fracture toughness ( mMPa ) 

Kmax                                     maximum stress intensity factor ( mMPa ) 
B
maxK                                     maximum (base line) stress intensity factor ( mMPa ) 

olK                             stress intensity factor at overload ( mMPa ) 

ΔK                             stress intensity factor range ( mMPa ) 



 ‘lay’                         layer number 

‘msif’                       maximum stress intensity factor 

n                              exponent in the Paris equation 

N                              number of cycles or fatigue life  

dN                           number of delay cycle 

A
dN                          number of delay cycle (ANN) 

E
dN                          number of delay cycle (experimental) 

W
dN                          number of delay cycle (Wheeler) 

A
fN                          final number of cycles (ANN) 
E
fN                          final number of cycles (experimental) 

‘olr’                        overload ratio 

p                              shaping exponent in the Wheeler model 

r                              label for rth neuron in hidden layer ‘lay-1’ 

rpi                            current plastic zone size corresponding to the ‘ith’ cycle (mm) 

rpo                           overload plastic zone size (mm) 

Rol                           overload load ratio 

s                               label for sth neuron in the hidden layer ‘lay’ 

‘sifr’                       stress intensity factor range 

t                              iteration number 

w                            plate width (mm) 
{ }lay

srW                      weight of the connection from neuron r in layer ‘lay-1’ to neuron s in 

                               layer ‘lay’    

y1, y2, y3                  inputs to the ANN                                                                         

γ                             retardation correction factor 

λ                             plastic zone correction factor 

ν                             Poison’s ratio 

α                            momentum coefficient  

η                             learning rate 
{ }lay
sδ                        local error gradient 



σys                                         yield point stress (MPa) 

σut                                         ultimate stress (MPa) 

 
 
Introduction 

Most load bearing structural components are subjected to random loading in 

service consisting of distinguished peaks. These load cycle interactions can have a very 

significant effect on the fatigue crack propagation which is a path dependent process [1]. 

A tensile overload can retard or even arrest the growing fatigue crack while a 

compressive under load can accelerate it [2-8]. Overload-induced retardation has a 

significant effect on fatigue crack growth as it enhances the life of the structure. A 

number of mechanisms may be responsible to explain the crack retardation phenomena, 

including plasticity induced crack-closure, blunting and / or bifurcation of the crack-tip, 

residual stresses and strains, strain-hardening, crack-face roughness, oxidation of crack 

faces etc [5, 9-15]. However, for design purposes it is particularly difficult to generate a 

universal algorithm to quantify these sequence effects on fatigue crack growth, due to the 

number and to the complexity of the mechanisms involved in this problem [16]. 

Irrespective of significant ambiguity and disagreements as regards to the exact 

mechanism of retardation, a number of empirical models [17] have been proposed. But, a 

technological gap still exists in the automatic prediction of fatigue life in case of mode-I 

spike load. This can be accomplished by the use of ANN (artificial neural network). 

ANN is a new class of computational intelligence system, useful to handle various 

complex problems with a capacity to learn by examples. The first ANN concept was 

adopted by McCulloch and Pits [18] in 1943, who suggested the cell model. Although 

some pioneer work was undertaken in 1949 [19] by focusing attention on the learning 

system of human brain, but the actual development on ANN concept started towards 

1980 through various studies [20]. It has emerged as a new field of soft-computing to 

deal with many multivariate complex problems for which an accurate analytical model 

does not exist [21-23]. ANN has proved to be a powerful and versatile computational tool 

in the application of a number of engineering fields [24-29]. In recent years, ANN has 

been also introduced in the field of fatigue in order to predict fatigue life [30-36]. A brief 

review on the topic has been presented by Jia et al. [37]. They used ANN to predict 



valuable fatigue responses in order to facilitate the development of design guidelines for 

hybrid material bonded interfaces.  

In this study, ANN has been used to predict fatigue crack growth rate (FCGR) 

under mode-I spike load with various overload ratio (Rol). The simulated results of 

unknown load ratio (not included in the training set) have been utilized to calculate the 

retardation parameters (ad and Nd) as well as the residual life. The predicted results have 

been compared with the experimental data conducted on 7020-T7 and 2024-T3 Al-alloys. 

It is observed that the results are in good agreement with the experimental findings. 

 

2. Experimental procedure 

The fatigue tests were performed on 7020-T7 and 2024-T3 aluminum alloys using 

single-edge notched (SEN) tension specimens having a thickness of 6.5mm. The 

chemical composition and the mechanical properties of the alloys are given in Table 1 

and 2 respectively. The specimens were made in the longitudinal transverse (LT) 

direction from the plate.  

 All the experiments were conducted in ambient temperature on a servo-hydraulic 

dynamic testing machine (Instron-8502) with 250 kN load cell, interfaced to a computer. 

The test specimens were fatigue pre-cracked under mode-I loading to an a/w ratio of 0.3 

and were subjected to constant load amplitude test (i.e. progressive increase in ΔK with 

crack extension) maintaining a load ratio of 0.1. The sinusoidal loads were applied at a 

frequency of 6 Hz. The crack growth was monitored with the help of a COD gauge 

mounted on the face of the machined notch. The stress intensity factor K was calculated 

using equations proposed by Brown and Srawley [38] as follows; 

wB
aFgK π).(f=                                                                                                         (1) 

where, 432 )/(39.30)/(72.21)/(55.10)/(231.012.1)(f wawawawag +−+−=     (2) 

The fatigue crack growth test was continued up to an a/w ratio of 0.4 and then a mode-I 

spike (static) overload was applied. After the application of overload, the pre-overload 

fatigue crack growth test (i.e. constant amplitude loading at load ratio of 1.0) was 

continued till the specimen fractured. The overloading was done at a loading rate of 8.0 

kN/min at different overload ratios such as 2.0, 2.25, 2.35, 2.5, 2.6, and 2.75 for six 7020 



T7 Al-alloy specimens and 1.5, 1.75, 2.0, 2.1, 2.25 and 2.5 for six 2024 T3 Al-alloy 

specimens. The overload ratio is defined as        

B
max

ol K
KR ol=                      (3) 

where, B
maxK  is the maximum stress intensity factor for base line test.  

 

3. Artificial Neural Network 

3.1 Fundamental approach 

The term “neural network” refers to a collection of neurons, their connections and 

the connection strengths between them. The knowledge is acquired during the training 

process by correcting the corresponding weights so as to minimize an error function. 

There are three types of learning in ANN technology: supervised, unsupervised and 

reinforcement. In case of supervised learning (learning with a teacher), the network is 

trained by optimizing corresponding weights in such a way that the significant outputs 

can be obtained for the inputs not belonging to the training set. The unsupervised training 

is based on organizing the structure so that similar stimuli activate similar neurons where 

there is no pre-defined output and the network finds differences and affinities between 

the inputs. The reinforcement learning, which is a particular form of supervised training 

attempts to learn input-output vectors by trial and error through maximizing a 

performance function (named reinforcement signal). 

Back propagation networks are in fact the powerful networks which refer to a 

multi-layered, feed-forward perceptron trained with an error-back propagation algorithm 

(error minimization technique). The architecture of a simple back propagation ANN is a 

collection of nodes distributed over a layer of input neurons, one or more layers of hidden 

neurons and a layer of output neurons. Neurons in each layer are interconnected to 

subsequent layer neurons with links, each of which carries a weight that describes the 

strength of that connection. Various non-linear activation functions, such as sigmoidal, 

tanh or radial (Gaussian) are used to model the neuron activity. Inputs are propagated 

forward through each layer of the network to emerge as outputs. The errors between 

those outputs and the target (desired output) are then propagated backward through the 

network and then connection weights are adjusted so as to minimize the error. 



3.2 Design and analysis of ANN model for crack growth rate prediction 

The neural network used in the present investigation is a multi-layer feed forward 

perceptron [23] trained with the standard back propagation algorithm [39]. It consists of 

one input layer, one output layer and seven hidden layers. Hence, the total numbers of 

layers in the network are nine. The chosen numbers of layers have been selected 

empirically so as to facilitate training. The three input parameters associated with the 

input layer are as follows;  

Stress intensity factor range = “sifr”; Maximum stress intensity factor = “msif”; Overload 

ratio = “olr”. 

The output layer consists of one output parameter (i.e. crack growth rate = “cgr”). 

The neurons associated with the input and output layers are three and one respectively. 

The neurons in seven hidden layers are twelve, twenty four, hundred, thirty five, and 

eight respectively. The neurons are taken in order to give the neural network a diamond 

shape as shown in Fig. 1. The neural network has been written in the C++ programming 

language and all the training tests have been performed on a personal computer in 

MATLAB environment. During training and during validation, the input patterns fed to 

the neural network comprise the following components: 
{ }1
1y  = stress intensity factor range                                                                             (4) 
{ }1
2y = maximum stress intensity factor                                                                       (5) 
{ }1
3y = overload ratio                                                                                                    (6) 

These input values are distributed to the hidden neurons which generate outputs given by 

[23]: 
{ } { }( )lay

s
lay

s f vy =                                                                                                             (7) 

where, { } { } { }∑ −=
r

yWv 1lay
r

lay
sr

lay
s .                                                                                    (8) 

‘lay’ = layer number (2 to 8) 

s = label for sth neuron in the hidden layer ‘lay’ 

r = label for rth neuron in hidden layer ‘lay-1’ 
{ }lay

srW  = weight of the connection from neuron r in layer ‘lay-1’ to neuron s in layer ‘lay’ 

f (.) = activation function, chosen in this work as the hyperbolic tangent function: 
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During training, the network output θactual, may differ from the desired output 

θdesired as specified in the training pattern presented to the network. A measure of the 

performance of the network is the instantaneous sum-squared difference between θdesired 

and θactual for the set of presented training patterns:  

( )2actualdesiredrr 2
1 ∑ −=

patterns
training
all

E θθ                                                                                       (10) 

Where θactual represents crack growth rate (“cgr”) 

The error back- propagation method is employed to obtain the network [23]. This 

method requires the computation of local error gradients in order to determine 

appropriate weight corrections to reduce ‘Err’. For the output layer, the error gradient 
{ }9δ is: 
{ } ( )( )actualdesired

9
1

'9 f θθδ −= V                                                                                        (11) 

The local gradient for neurons in hidden layer {lay} is given by: 

{ } { }( ) { } { } ⎟
⎠

⎞
⎜
⎝

⎛= ∑ ++

k

WV 1lay
ks

1lay
k

lay
s

'lay
s f δδ                                                                              (12) 

The synaptic weights are updated according to the following expressions: 

( ) ( ) ( )11 srsrsr +Δ+=+ tWtWtW                                                                                   (13) 

and ( ) ( ) { } { }1lay
r

lay
ssrsr 1Δ −+Δ=+ ytWtW ηδα                                                                   (14) 

where, 

α = momentum coefficient (chosen empirically as 0.2 in this work) 

η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation of a training pattern and 

correction of the weights. 

The final output from the neural network is: 
{ }( )9

1actual Vf=θ                                                                                                            (15) 

where, 
{ } { } { }∑=

r

yWV 8
r

9
1r

9
1                                                                                                        (16) 



3.3 Application of neural network architecture 

Proper selection of input and output parameters and their normalization are the 

two primary objectives to design a suitable ANN architecture. The proposed ANN model 

has been developed using back propagation architecture with three inputs and one output. 

The two crack driving forces: stress intensity factor range (ΔK) and maximum stress 

intensity factor (Kmax) have been chosen as the two inputs. The selection of ΔK and Kmax 

as two inputs for the present model is based on the principle of Unified Approach [5]. 

According to this principle, fatigue is considered as two-parametric problem because 

there are two driving forces (ΔK and Kmax) required to obtain fatigue crack growth. The 

third input is the overload ratio (Rol) as the amount of retardation varies with the overload 

ratio. Crack growth rate (da/dN) has been selected as the output for the present study. As 

far as normalization of input and output parameters are concerned, classical 

normalization, where the range is scaled between 0 and 1, may not be applicable in every 

ANN model. To make the input amenable for successful learning to minimize the overall 

sum-squared error, the two input parameters ΔK and Kmax have been normalized between 

1 and 4, while the other one, overload ratio (Rol) has been normalized between 1 and 3. 

Similarly the output ⎟
⎠
⎞

⎜
⎝
⎛

N
a

d
d  has been normalized between 0 and 3 for network training 

and testing. The inputs and outputs of the training sets (TS) have been constituted from 

505050 ×× experimental values of ΔK, Kmax and ⎟
⎠
⎞

⎜
⎝
⎛

N
a

d
d data respectively for each of the 

overload ratios (i.e. Rol = 2.0, 2.25, 2.5, 2.6, and 2.75 in case of 7020-T7 Al alloy and Rol 

= 1.5, 1.75, 2.0, 2.25 and 2.5 in case of 2024-T3 Al alloy) separately for both the 

materials which has been kept ready to be fed to the trained ANN. The performance of 

the trained ANN model has been presented in Table 3. Figures 2 and 3 illustrate the mean 

square error (MSE) curves during the training of the model. 

 

4. Results  

4.1 Analysis of experimental results 

The experimental values of crack length versus number of cycles for various 

overload ratios (Rol) have been plotted in Figs. 4 and 5 respectively along with base line 



data in case of both the materials. The crack growth rate, ⎟
⎠
⎞

⎜
⎝
⎛

N
a

d
d has been calculated by 

incremental polynomial method as per ASTM E647 [42]. The results have been plotted 

against stress intensity factor (ΔK) in Figs. 6 and 7 for the post overload portion covering 

both the regimes II and III of fatigue crack growth rate curve. 

 

4.2 Analysis of ANN model results 

The adopted multi-layer perceptron (MLP) neural network model has been 

applied to simulate the crack growth rate of an unknown set of overload ratio (Rol = 2.35 

for Al 7020-T7 and Rol = 2.1 for Al 2024-T3) as validation set (VS). The performance of 

the trained ANN model has been presented in Table 3. The input parameters i.e. stress 

intensity factor range (ΔK), maximum stress intensity factor (Kmax) and overload ratio for 

the validation set have been fed to the trained ANN model in order to predict the 

corresponding crack growth rate ⎟
⎠
⎞

⎜
⎝
⎛

N
a

d
d  which was not included during training. The 

predicted results have been presented in Figs. 8 and 9 respectively along with 

experimental data for comparison. It is observed that the simulated da/dN-ΔK points 

follow the experimental ones quite well. The number of cycles has been calculated from 

the simulated ⎟
⎠
⎞

⎜
⎝
⎛

N
a

d
d values by taking the experimental ‘a’ and ‘N’ values of the overload 

point as the initial values and assuming an incremental crack length of 0.05mm in steps. 

The predicted a-N value of the ANN model has been compared with the experimental 

data in Figs. 10 and 11 respectively for both the materials. The a-da/dN and N-da/dN 

curves have been given in Figs. 12 to 15.  

 

 

4.3 Comparison with ‘Wheeler Model’ 

For determination of the various retardation parameters such as retarded crack 

length (ad) and delay cycles (Nd), it is necessary to calculate the shaping exponent in 

Wheeler model. The Wheeler retardation relation for the delay in crack growth due to a 

single tensile overload is given by: 



( ) ( )[ ]n
ip

retarded

Δ
d
d KCC
N
a

=⎟
⎠
⎞

⎜
⎝
⎛                                                                                (17) 

where, C and n are Paris constants whose values have been determined from the 

experimental data and presented in Table 4. The Wheeler’s retardation parameter (Cp)i is 

given by the following equation: 

( )
p

ipool

pi

ip ][ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
=

ara
r

C                                                                                 (18) 

where, p = empirically determined shaping parameter 

           aol = crack length at overload 

and rpo = overload plastic zone size, that can be calculated, assuming plane stress loading 

using the following expression: 
2

ys
po

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

σπ
olKr                                                                                                 (19) 

Assuming plane stress loading conditions, the current cyclic plastic zone rpi can be 

calculated from the expression given below: 
2

ys
pi 2

Δ1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

σπ
Kr                                                                                            (20) 

The presence of a net compressive residual stress field around the crack-tip reduces the 

usual size of the plane stress cyclic plastic zone size. Therefore, Ray et al. [43] introduced 

a plastic zone correction factor λ in the expression of the instantaneous cyclic plane stress 

plastic zone size in a compressive stress field.  
2

ys
pi 2

Δ1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

σπ
λ Kr                                                                                          (21) 

Also from eqn.(17) 
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Equation (18) is now written as 

( ) ( )
p

ipool
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⎥
⎦

⎤
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⎡
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⎞
⎜
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C γ
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                                                        (23) 



where, γ  is a correction factor which is expressed as pλγ = . 

The values ofγ ,λ  and p calculated using equations (22) and (23) are presented in Table 

4 for both the materials. Using these values, the crack lengths and the corresponding 

number of cycles have been calculated. The resulting a-N curves are presented in Figs. 16 

and 17 while da/dN-ΔK curves are presented in Figs. 18 and 19 along with experimental 

data and present ANN model of the post overload portion (up to the point where 

retardation ceases) for comparison. The different calculated retardation parameters have 

been given in Table 5 for the quantitative comparison of the predicted results. 

 

5. Discussion and Conclusion 

It is observed from the results (Table-5) that the error range of retarded crack 

length (ad) predicted from the ANN model is -6 to -9 % whereas, it is +3 to +13 % in case 

of Wheeler model. Similarly, the error range of delay cycle (Nd) predicted from ANN 

model is +7 to +9 % whereas, it is -2 to -9 % in case of Wheeler model. It shows that the 

prediction accuracy of ANN model is better as far as the retardation parameters are 

concerned. Analyzing the end life of post overload period of the specimen, it is observed 

that the error range of fatigue life (Nf) is +1 to +4 % for both the alloys. From the above 

results it is evident that the proposed multi-layer perceptron ANN over-predicts the life 

with reasonable accuracy in comparison to experimental findings.  

From the present investigation, it can be concluded that the proposed ANN model 

has proved to be an excellent computational tool for the prediction of residual fatigue life 

as well as the retardation parameters (ad and Nd) in case of mode-I spike load. The 

predicted results are in good agreement with the experimental findings and also with the 

conventional Wheeler’s model. It has been further verified that taking the single crack 

driving force (ΔK) instead of two crack driving forces (ΔK and Kmax) along with overload 

ratio (Rol) as inputs resulted poor prediction in crack growth rate (da/dN), thereby 

supporting the principle of Unified Approach. Therefore, it should be noted that proper 

selection of input and output parameters greatly affects the accuracy of the simulated 

results.  

One of the shortcomings of the present ANN model is that it takes more 

computational time for proper training of the network to meet the target. Further, it has 



the weakness of extrapolating model’s predictions outside the training set region. The 

present form of the neural network architecture could provide better prediction results if 

the training data base could be enhanced by more experimental data. The use of other 

types of neural networks such as recurrent, associative memory, and self-organizing 

networks could also improve the prediction accuracy. 
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                                                 Table-1 (Chemical composition) 

Materials Al Cu Mg Mn Fe Si Zn Cr Others 

7020-T7  93.13 0.05 1.2 0.43 0.37 0.22 4.6 - - 
2024-T3  92.78 3.9 1.5 

 
0.32 0.5 0.5 0.25 0.1 0.15 

 
 
                                        Table-2 Mechanical properties 
 

Material Tensile 
strength 

(σut ) 
MPa 

Yield    
strength 

(σys) 
MPa 

Young’s 
modulus 

(E) 
MPa 

Poisson’
s ratio  

(ν) 

Plane Strain 
Fracture 

toughness 
(KIC) 

mMPa  

Elongation 

7020-T7 352 315 70,000 0.33 50.12 21.54 % 
in 40 mm 

2024-T3 469 324 73,100 0.33 37.0 19 % 
in 12.7 mm 

 

 

Table 3 – Performance of ANN model during training     

Material Momentum 
Coefficient 

Learning 
rate 

Hidden 
neurons

MSE Training 
epochs 

Computational 
Time (Min.) 

7020-T7 0.2 0.35 179 610056.1 −× 510861.6 ×  727 
2024-T3 0.2 0.35 179 610034.1 −× 510559.6 ×  694 
 
 

Table-4 Values of material parameters used in Wheeler model 
for the tested specimens 

    
Material      C      n        λ        p        γ 
7020-T7 8106 −×  3.14763     3.5931     0.4246    1.7213 
2024-T3 8106 −×  3.2700     0.7385     0.3748    0.8926 
 



       Table 5 – Comparison of ANN and Wheeler model results with experimental data 
 

Material A
da  

mm 

W
da
 

m
m 

E
da  

mm 
% 

error 
in 

A
da  

% 
Error 

in 
W
da  

A
dN  

K 
cy. 

W
dN  

K 
cy. 

E
dN  

K 
cy. 

% 
error 

in 
A
dN  

% 
error 

in 
W
dN  

A
fN  

K cy. 

E
fN  

K cy. 
% 

error 
in 

A
fN  

7020-T7 1.998 2.2
00 

2.134 -
6.373 

+3.093 32.67
3 

29.80
2 

30.50
9 

+7.09
3 

-
2.317 

83.721 80.815 +3.596 

2024-T3 1.990 2.4
50 

2.181 -
8.757 

+12.333 40.71
6 

34.51
8 

37.59
9 

+8.29
0 

-
8.194 

139.384 136.804 +1.886 

 
 
 
 
 
 

 
                                              

        Fig. 1 - ANN architecture  
 
 
 
 
 



 

  
Fig. 2 – MSE curve obtained during training of ANN (Al 7020-T7) 

 

 

 

 

  
      Fig. 3 – MSE curve obtained during training of ANN (Al 2024-T3) 
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Fig. 4 - a-N curves for different overload ratios (7020-T7) 
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Fig. 5 - a-N curves for different overload ratios (2024-T3) 
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Fig. 6 -Variation of crack growth rate with stress intensity factor range (7020-T7) 
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Fig. 7 -Variation of crack growth rate with stress intensity factor range (2024-T3) 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

               

 

    Fig. 8 - Comparison of predicted (ANN) and experimental crack growth rate (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 9 - Comparison of predicted (ANN) and experimental crack growth rate (2024-T3) 
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    Fig. 10 - Comparison of predicted (ANN) and experimental number of cycle (7020-T7)  

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 11 - Comparison of predicted (ANN) and experimental number of cycle (2024-T3) 
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Fig. 12 - Comparison of predicted (ANN) and experimental crack growth rate 

  with crack length (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 - Comparison of predicted (ANN) and experimental crack growth 

  rate with crack length (2024-T3) 
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Fig. 14 - Comparison of predicted (ANN) and experimental crack growth rate 

  with number of cycle (7020-T7) 

 

 

 

 

 

 

 

 

 

 

 

 

                      

         Fig. 15 - Comparison of predicted (ANN) and experimental crack growth rate  

  with number of cycle (2024-T3)           
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Fig. 16 - Comparison of Wheeler, predicted (ANN) and experimental 

number of cycle (7020-T7) 
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Fig. 17 - Comparison of Wheeler, predicted (ANN) and experimental 

                    number of cycle (2024-T3) 
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Fig. 18 - Comparison of Wheeler, predicted (ANN) and experimental 

crack growth rate (7020-T7) 
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Fig. 19 - Comparison of Wheeler, predicted (ANN) and experimental 

crack growth rate (2024-T3)         

 


