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Abstract—Due to more overhead of asymmetric cryptosystems,
traditionally, the symmetric cryptosystem is used to encrypt
long messages. In case of symmetric cryptosystems, it creates
the problem of key management. So to encrypt long messages,
we usually, take the help of both symmetric and asymmetric
cryptosystems. In this paper, we proposed an asymmetric
cryptosystem for encrypting long messages, which is not only
efficient but also secure. In consideration of the aspect of
efficiency and computation, our proposed scheme uses elliptic
curve cryptosystem.

Index Terms—ElGamal, Elliptic Curve, Public Key, Diffie-
Hellman.

I. INTRODUCTION

Since the invention of public-key cryptography in 1976 by
Whitfield Diffie and Martin Hellman [1], numerous public-
key cryptographic systems have been proposed. All of these
systems based their security on the difficulty of solving a
mathematical problem. Over the years, many of the proposed
public-key cryptographic systems have been broken and many
others have been demonstrated to be impractical. Today, only
three types of systems are considered both secure and efficient.
Examples of such systems and the mathematical problems on
which their security is based, are [2]:

• Integer factorization problem (IFP): RSA and Rabin-
Williams.

• Discrete logarithm problem (DLP): the U.S. govern-
ments Digital Signature Algorithm (DSA), the Diffie-
Hellman key agreement scheme, the ElGamal encryption
and signature schemes, the Schnorr signature scheme, and
the Nyberg-Rueppel signature scheme.

• Elliptic curve discrete logarithm problem (ECDLP):
the elliptic curve analog of the DSA (ECDSA), and
the elliptic curve analogs of the Diffie-Hellman key
agreement scheme, the ElGamal encryption and signature
schemes, the Schnorr signature scheme, and the Nyberg-
Rueppel signature scheme.

Given the current state of our knowledge about algorithms
for the IFP, DLP and ECDLP problems, we can conclude
that the ECDLP is significantly more difficult than either
the IFP or the DLP. Figure 1 compares the time required to
solve an instance of the ECDLP (and hence break Elliptic
Curve Cryptography (ECC)) with the time required to solve
instances of the IFP or DLP (and hence break RSA or DSA,

Fig. 1. Comparison of Security Levels

respectively) for various modulus sizes and using the best
general algorithms known. The running times are computed
in MIPS years. As a benchmark, it is generally accepted that
1012 MIPS years represents reasonable security at this time.
In Figure 1, the times to break RSA and DSA are grouped
together because the best algorithms known for IFP and DLP
have approximately the same asymptotic running times. From
Figure 1, we see that to achieve reasonable security, RSA
and DSA should employ 1024-bit moduli, while a 160-bit
modulus should be sufficient for ECC. Moreover, the security
gap between the systems increases dramatically as the moduli
sizes increases. For example, 300-bit ECC is dramatically
more secure than 2048-bit RSA or DSA.

Asymmetric cryptosystems such as RSA [3], Diffie-Hellman
[1] and Elliptic Curve [4] have been widely used in many
applications. However, because asymmetric encryptions are
more expensive than symmetric encryptions such as DES [5],
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[6] and AES [7] in terms of computational cost, generally they
are not directly used to encrypt long messages. Traditionally,
if there is a need to encrypt a long message using an asym-
metric cryptosystem, then a symmetric cryptosystem is used in
addition. The message itself is encrypted using the symmetric
cryptosystem and the symmetric key is encrypted using the
asymmetric cryptosystem. To eliminate this requirement for
an additional cryptosystem, we propose a novel asymmetric
cryptosystem based on ECDLP. Elliptic curve cryptosystem
gives more security with less bit size key and computationally
faster than the other asymmetric cryptosystems. Because of
these reasons, we proposed a novel and efficient cryptosystem
for encrypting long message based on ECDLP.

The organization of this paper is as follows. In the Sec-
tion II, the basic concept of elliptic curve (EC) is explained. In
Section III, discussion on Elliptic Curve Cryptosystem based
on ElGamal scheme has been illustrated. The proposed scheme
and its security analysis are discussed in section IV. Finally,
Section V presents the concluding remarks.

II. ELLIPTIC CURVE OVER FINITE FIELD

The use of ECC was initially suggested by Neal Koblitz [8]
and Victor S. Miller [9] and there after many researchers have
suggested different application of Elliptic Curve Cryptosys-
tems. Elliptic curve cryptosystems over finite fields have some
definite advantages. One advantage is the “much smaller key
size” as compared to other cryptosystems like RSA or Diffie-
Hellman, since: (a) only exponential-time attack is known
so far if the curve is carefully chosen [4], and (b) elliptic
curve discrete logarithms might be still intractable even if
factoring and multiplicative group discrete logarithms are
broken. Further ECC is also more computationally efficient
than the first-generation public key systems such as RSA or
Diffie-Hellman [10].

A. Elliptic Curve Groups Over Fq

A non-super singular Elliptic curve E over Fq can be written
as:

E : y2 mod q = (x3 + ax + b) mod q (1)

where (4a3 + 27b) mod q �= 0. The points P = (x, y) where
x, y ∈ Fq . P (x, y) that satisfy the Eqn. 1 together with a “point
of infinity” denoted by O form an abelian group (E, +, O)
whose identity element is O.

Adding Distinct Points P and Q: The negative of the point
P = (x1, y1) is the point −P = (x1,−y1). If P (xp, yp) and
Q(xq, yq) are two distinct points such that P is not −Q, then

P + Q = R (2)

where R = (xr , yr). Therefore,

s = (yq − yp)/(xq − xp) mod q

xr = (s2 − xp − xq) mod q

yr = (−yp + s(xp − xr)) mod q

where s is the slope of the line passing through P and Q.

Doubling the Point P : Provided that yp is not 0,

2P = R (3)

where R = (xr , yr). Therefore,

s = ((3x2
p + a)/(2yp)) mod q

xr = (s2 − 2xp) mod q

yr = (−yp + s(xp − xr)) mod q

The elliptic curve discrete logarithm problem is defined as
follows [11].

Definition: Let E be an elliptic curve over a finite field Fq

and let P ∈ E(Fq) be a point of order n. Given Q ∈ E(Fq),
the elliptic curve discrete logarithm problem is to find the
integer d ∈ [0, n− 1], such that Q = dP .

III. ELLIPTIC CURVE CRYPTOSYSTEM BASED ON

ELGAMAL

In this section, we discuss ECC based on Elgamal. Suppose
Alice wishes to send a message M to Bob. First, she imbeds
the value m onto the elliptic curve E, i.e., she represents the
plaintext M as a point Pm ∈ E. Now she must encrypt Pm.
Let dB denote Bob’s secret key. Alice first chooses a random
integer k and sends Bob a pair of points (C1, C2) on E where

C1 = kG

C2 = Pm + kdBG

To decrypt the cipher text, Bob computes

C2 − dBC1 = Pm + kdBG− dBkG

= Pm

IV. PROPOSED SCHEME

In this section, we propose an efficient scheme for enci-
phering a large plaintext using ECDLP. Our proposed scheme
is based on both the Diffie-Hellman distribution scheme and
ElGamal cryptosystem. The Diffie-Hellman key distribution
scheme is used to generate the key pair of public and secret
keys for all users ui for i = 1, 2, ..., n. Each user ui randomly
selects secret key di and computes the corresponding public
key Qi = diP .

In our proposed scheme, let Bob and Alice want to deliver a
confidential large message M as per the following algorithm:

A. The Algorithm

Initially, Bob breaks the plaintext M(Mx, My) into t pieces
M1, M2, ..., Mt of length being 512 bits and convert them into
points in EC.

Key Generation (Alice):

1) Select a random integer d from [1, n− 1].
2) Compute Q = dP .
3) A’s public key is Q and private key is d.
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Encryption (Bob):

1) Select two random numbers (r1, r2) ∈ [1, n− 1].
2) Compute B1 and B2 as follows:

B1 = r1P (4a)

B2 = r2P (4b)

such that
SAB1 = r1Q = r1dP = (xs1, ys1)
SAB2 = r2Q = r2dP = (xs2, ys2)

3) if xs1 = 0 mod P and xs2 = 0 mod P then go to step
2.

4) Compute Cxj and Cyj , j = 1, 2, ..., t as follows:

Cxj = Mxj ∗ (xs1 ⊕ x2
s2) mod n (5a)

Cyj = Myj ∗ (ys1 ⊕ y2
s2) mod n (5b)

5) Send (B1, B2, Cxj , Cyj), j = 1, 2, ..., t to Alice.

Decryption (Alice):

1) Alice receives (B1, B2, Cxj , Cyj), j = 1, 2, ..., t and
does the following to get M = (Mx, My)

2) Compute SAB1 and SAB1 as follows:
SAB1 = dB1 = dr1P = (xs1, ys1)
SAB2 = dB2 = dr2P = (xs2, ys2)

3) Compute Mxj and Myj as follows:
Mxj = Cxj ∗ (xs1 ⊕ x2

s2)
−1

Myj = Cyj ∗ (ys1 ⊕ y2
s2)

−1

4) Find Message Mj = (Mxj , Myj).
In our proposed algorithm sender required to only select

two random numbers r1 and r2. The Table I describes the
comparison between the proposed scheme and ElGamal like
EC cryptosystems.

TABLE I
COMPARISON BETWEEN THE PROPOSED SCHEME AND ELGAMAL LIKE EC

CRYPTOSYSTEMS

Proposed Scheme ElGamal like EC Cryptosystems

•2 times scalar point multiplication •2n times scalar point multiplication
•2n times exclusive-OR operation
•2n times multiplication operation •2n times multiplication operation

Since the computational complexity depends on elliptic
scalar point multiplication, the scheme proposed by us is
computationally faster as compared to ElGamal based EC
cryptosystem when used to encrypt large messages.

B. Security Analysis

Our proposed scheme is based on both the Diffie-Hellman
distribution scheme and ElGamal cryptosystem. Hence, it is
computationally hard to find the secrete key d from Q and P .

It is also very difficult to compute r1 and r2 from the equations
(4a) and (4b) as both are based on ECDLP.

If an intruder tries to do the crypto analysis using chosen-
plaintext attack, for him/her it is difficult to find xs1 and xs2

from the equations (5a) and (5b). The proposed scheme is
based on the difficulty to find the composite exclusive-OR
operation. Thus our proposed scheme is secure against the
chosen-plain text attack.

V. CONCLUSION

In this paper, we have shown that our scheme is computa-
tionally faster than the conventional ElGamal scheme. Thus the
scheme can be used to encrypt the long message as compared
to conventional encryption systems. We have also used the
Elliptic Curve Cryptosystem which requires less computational
power, memory and communication bandwidth giving it clear
edge over the traditional crypto-algorithm. We have also shown
that our scheme is secure against the chosen-plain text attack.
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