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Abstract— The problem of portfolio optimization is a 
well-known standard problem in financial world. It has 
received a lot of attention among many researchers. 
Choosing an optimal weighting of assets is a critical issue 
for which the decision maker takes several aspects into 
consideration. In this paper we consider a multi-objective 
portfolio assets selection problem where the total profit of 
is maximized while total risk to be minimized 
simultaneously. Three well-known multiobjective 
evolutionary algorithms i.e. Pareto Envelope-based 
Selection Algorithm(PESA), Strength Pareto 
Evolutionary Algorithm 2(SPEA2), Nondominated 
Sorting Genetic Algorithm II( NSGA II) for solving the 
bi-objective portfolio optimization problem has been 
applied. Performance comparison  carried out in this 
paper by performing different  numerical experiments. 
These experiments are performed using real-world data. 
The results show that NSGA-II outperforms other two for 
the considered test cases. 
 
Index Terms—Genetic algorithms,  multiobjective 
optimization, Pareto-optimal solutions. global 
optimization, Crowding distance. 

INTRODUCTION 

  Choosing an optimal portfolio weighting of assets 
is main aim of portfolio optimization problem. 
Portfolio optimization is very complicated as it 
depends on  factors like assets interrelationships, 
preferences of the decision makers, resource 
allocation and several other factors.  Selecting an 
optimal portfolio weighting of assets, when their 
future rate of return is uncertain can be seen as a 
problem of minimizing the uncertainty for a given 
level of the portfolio expected return. The risk of a 
particular investment is not as important as its 
contribution to total portfolio risk. Combining a 
riskful investment with one carrying less risk it is 
possible to reduce the total risk associated to that 
portfolio. 

  Markovitz proposed the ”expected return - 
variance (E-V)” model: maximizing the expected 
return for a unit of assumed risk [4].  Markovitz 
modern portfolio theory has originated from the idea 
that the investor is interested in two fundamental 
aspects i.e. risk and return. The risk of a particular 

investment is not as important as its contribution to 
total portfolio risk. Combining a riskful investment 
with one carrying less risk it is possible to reduce the 
total risk associated to that portfolio. Therefore, In 
this paper we suggest the use of multiobjective 
optimization algorithms for optimal weighting of 
assets as a  portfolio optimization problem. In this 
paper we use PESA, SPEA2 and  NSGA II  for 
modeling the Pareto front and for optimizing the 
portfolio performance. The results obtained with 
these  algorithms are finally compared by performing 
different numerical experiments. Selecting an optimal 
portfolio weighting of assets, when their future rate 
of return is uncertain is seen as a problem of 
minimizing the uncertainty for a given level of the 
portfolio expected return. This uncertainty is called 
as risk and measured by standard deviation of the 
probability distribution of future return.  

  Portfolio p  consisting of N  assets. Selection of 
optimal weighting of assets (with specific volumes 
for each asset given by weights iw ) is to be found. 
The unconstrained portfolio optimization problem is 
given as minimizing the variance of the portfolio and 
maximizing the return of the portfolio as defined in 
equation 1 and 2 respectively. 
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Where  N   is the number of assets available, iµ  

the expected return of asset i , ijσ  the covariance  

between asset i and j , and finally iw  are the 
decision variables giving the composition of the 
portfolio. pρ be the standard deviation of portfolio 
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and pα  be the expected return of portfolio. This is a 
multiobjective optimization problem with two 
competing objectives. First is to minimize the 
variance (risk) of the portfolio and at the same the 
return of the portfolio will be maximized. The last 
two equation 3 and 4 gives the constraints for this 
portfolio optimization problem. Section II  briefly 
describes the multi-objective  optimization problem. 
In Section III some of the multi-objective 
evolutionary techniques are shortly described. 
Simulation studies based on several numerical 
experiments based on related work are performed in 
section IV. The Convergence characteristics are 
shown in section V. Conclusions and further research 
work directions are discussed in the  section VI. 

II. MULTI-OBJECTIVE OPTIMIZATION 

         In a single-objective optimization problem, an 
optimal solution  is the one which optimizes the 
objective with certain  model constraints. It is not 
possible to find a single solution for a multiobjective 
problem and due to the contradictory objectives  a set 
of solutions are found.  The general multi-objective 
minimization problem is formulated as: In multi-
objective optimization, we are tasked with 
minimizing not just one objective function, but  n   
objective functions: 
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     The solution to this problem is more complex than 
the single-objective case, and the idea of Pareto-
dominance must be introduced to be able to visualize 

it. Consider first an objective function ⎟
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A point 
−

1x  with an objective function vector 
−

1F  , is 

said to dominate point 
−

2x  , with an objective 

function vector 
−

2F , if no component of 
−

1F is greater 

than its corresponding component in 
−

2F  , and at 

least one component is smaller. Similarly, 
−

1x can be 

said to be Pareto-equivalent to 
−

2x  if some 

components of 
−

1F are greater than 
−

2F  and some are 
smaller. Pareto-equivalent points represent a trade-off 
between the objective functions, and it is impossible 
to say that one point is better than another 
Paretoequivalent point without introducing 
preferences or relative weighting of the objectives. 
      Thus, the solution to a multi-objective 
optimization problem is a set of design vectors which 
are not dominated by any other vector, and which are 
Pareto- equivalent to each other. This set is known as 
the Pareto-optimal set. 
Some basic multi-objective concepts are: 
1.Non-dominated:All decision vectors which 
dominate  others but do not dominate themselves are 
called non-dominated or optimal solutions in the 
Pareto sense.  
2.Local optimality: A vector u  is locally optimal in 
the Pareto sense, if there exists a real e  >  0 such that 

there is no vector  ( )
−

xu  which dominates the vector 

u  with ( )
−

xu .    
3.Global optimality: A vector u is globally optimal in 
the Pareto  sense, if there does not exist any vector       

( )
−

xu  such that vector  ( )
−

xu  dominates the vector  
u . 
4.Pareto-optimal set : The set of all globally optimal 
solutions is called the Pareto-optimal set, and the set 
of all non-dominated objective vectors is called the 
Pareto Front (PF). 
 
5.Pareto optimization: Finding an approximation to 
either the Pareto-optimal set or the Pareto front is 
referred to as Pareto optimization.  
 
     Two objectives are considered: maximizing the 
total profit and minimizing the total risk of the 
portfolio   by selecting different weighting of total 
available assets. These two objectives are 
contradictory i.e to increase profit, one have to take 
more risk.  Interdependencies are considered in the 
profit objectives while calculating risk 
interdependencies is rather difficult and not very 
meaningful since risk is derived as an average of 
several dimensions.  This paper describes a situation 
in which 31 assets are available and an optimal 
portfolio weighting of these assets are needed. We 
assume that interdependencies exist among these 
assets. 
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III. MULTIOBJECTIVE EVOLUTIONARY 
ALGORITHMS 

     Multi-objective evolutionary algorithms are 
popular approaches in dealing with problems which 
consider several objectives to optimize.  In this paper  
we compared the performance of three recently 
developed multiobjective evolutionary algorithms 
that are:  Pareto Envelope-based Selection Algorithm, 
Strength Pareto Evolutionary Algorithm 2, 
Nondominated Sorting Genetic Algorithm II for 
optimal weighting of assets in portfolio optimization 
problem.  
    In PESA mating selection procedure is based on a 
crowding measure.  The crowding distance  
measurement is done over the archive members. 
Crowding strategy works by forming hyper-grid and 
it divides phenotype space into hyper-boxes. Each 
individual in the archive is associated with a 
particular hyper-box. It has a squeeze factor  which is 
equal to the number of other individuals from archive 
which present in the same hyper box. Environmental 
selection criteria based on this crowding measure is 
used for each individuals from archive . The main 
attraction of PESA is the integration of selection and 
diversity maintenance, whereby essentially the same 
technique is used for both tasks. 
     In SPEA 2  mating selection procedure is based on  
fitness measure and it uses binary tournament 
operator. Here the archive update is performed 
according to the fitness values associated with each 
of the individual in the archive. All individuals that 
have fitness less than 1 fill the archive and if the 
archive size is less than pre-established size, the 
archive is completed with dominated individuals 
from current pool. If the archive size exceeds the pre-
established size, some individuals are removed from 
archive using the truncation operator.  This operator 
is based on the distance of an individual to its nearest 
neighbor.  
      In NSGA II mating selection is based on the 
ranking criteria just like PESA and selection criteria 
is based on the crowding comparison operator.. Here 
the pool of individuals is split into different fronts 
and each front has assigned a specific rank. All 
individuals from a front iF  are ordered according to 
a crowding measure which is equal to the sum of 
distance to the two closest individuals along each 
objective. The environmental selection is processed 
based on these ranks. The archive will be formed by 
the nondominated individuals from each front and it 
begins with the best ranking front. Here the new 
population obtained after environmental selection is 
used for selection crossover and mutation to create a 

new population. It  uses a binary tournament 
selection operator. 

A. PESA Algorithm. 
          PESA has two parameters concerning 
population size i.e. Ip ( the size of internal  
population, IP)  and  PE (the maximum size of 
external population EP) . It has one parameter 
concerning the hyper-grid crowding strategy. 
1. Generate and evaluate each of an initial internal 
population (IP) of PI chromosomes. 
2. Initialize the external population (EP) as empty set. 
3.  For  1=t  to Number of Generations  
3.1. Incorporate the non-dominated members of IP 
into EP. 
3.2. Delete the current content of IP. 
3.3. Until obtain new solution of Ip . 
3.3.1.Select two parents from EP with probability 

cp  
3.3.2. Recombination this two parents for obtaining 
one offspring 
3.3.3. Mutate the offspring 
3.3.4. Select one parent from IP with probability 
( )cp−1  
3.3.5. Mutate the parent to produce one offspring 
3.3.6. Add the two obtained offspring into IP 
4. Return to 3  

B. The SPEA2 Algorithm 
Input: N  (population size) 
N  (archive size) 
T  (maximum number of generations) 
Output: A (nondominated set) 
SPEA2 algorithm has five main steps i.e 
initialization, fitness assignment, environmental 
selection, termination and mating selection. 
1. Generate and Initialize Population 

2. Create empty external set 
−

0P  i.e the archive 

3. Evaluate fitness values of each individual in 0P  
4. For t = 1 to Number of Generations 

4.1 Calculate fitness of each individual in tP  and 
−

tp  

4.2 Copy all nondominated individuals in tP   and 
−

tp  to 
−

+1tP  

4.3 If the  
−

+1tP  size exceeds archive size (pre-

established) reduce 
−

+1tP  using truncation operator 
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4.3 If the  
−

+1tP  size is less than archive size then use 

dominated individuals in tP  to fill 
−

+1tP  
4.4 Perform Binary Tournament Selection with 

replacement on 
−

+1tP  to fill the mating pool 
4.5 Apply crossover and mutation to the mating pool 
and update tP  
4.6 Return to 4  

C. NSGA II Algorithm 
1.  Initialize Population 
2. Generate random Parent Population 0p  of size N  
3.  Evaluate Objective Values 
4. Assign Fitness (or Rank) equal to its nondominated 
level 
5.  Generate Offspring Population 0Q  of size N    
with Binary Tournament Selection, Recombination 
and Mutation 
 6. For 1=t  to Number of Generations 
 6.1 Combine Parent and Offspring Populations 
 6.2 Assign Rank (level) based on Pareto              
       Dominance. 
 6.3 Generate sets of non-dominated fronts 
 6.4 until the parent population is filled do 
 6.4.1  determine Crowding distance between  
           points on each front iF  

 6.4.2 include the ith  nondominated front in  
            the next parent population ( )1tP +  
 6.4.3 check the next front for inclusion 
 6.5 Sort the front in descending order using  
       Crowded comparison operator 
 6.6  Choose the first N  - card ( )1+tP elements          
         from front and include them in the next  parent   
        population ( )1+tP   
 6.7 Using Binary Tournament Selection,       
Recombination and  Mutation Create next generation  
 7. Return to  6  

IV. SIMULATION STUDIES  

    In this section we describe the test problem used 
to compare the performance of PESA, SPEA 2, and 
NSGA II and for optimal weighting of the available 
assets.  In all the cases  the objective number is 2. We 
took parameters of these algorithms such a way that it 
will be comparable. We run experiments on data 
from OR library that maintained by Prof. Beasley as 
a public benchmark data set and is derived from 

Heng  Seng data set with 31 assets. The data can be 
found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib 
/portinfo.html. 
 
     The PESA has internal population size of 100, 
external population size of 100 and number of gene is 
equal to number of assets. We took number of 
generations as 100, uniform crossover rate as 0.8 and 
mutation rate 0.05. The grid size i.e. the number of 
division per dimension is 10. The NSGA II has 
population size of 100, number of generations 100, 
Crossover rate 0.8 and mutation rate 0.05. The 
numbers of real-coded variables are equal to number 
of assets and the selection strategy was tournament 
selection. The SPEA2 has population size of 100, 
number of generation be 100, crossover rate 0.8 and 
mutation rate 0.05. The gene length is equal to 
number of assets. 

1. S metric 
     The S metric how much of the objective space is 
dominated by a given nondominated set A.  If the S 
metric of a nondominated front 1f   is less than 

another front 2f  then 1f  better then 2f . It has been 
proposed by Zitzler[8]. 
2. ∆  metric 
     This metric called as spacing metric (∆ ) 
measures how evenly the points in the approximation 
set are distributed in the objective space. This 
formulation for this metric is given by: 

( )
−

−

=

−

−++

−++
=∆

∑

dNdd

dddd

lf

N

i
ilf

1

1

1                                 (6) 

Where id  be the Euclidean distance between 
consecutive solutions in the obtained nondominated 

set of solutions. 
−

d  is the average of these distances. 

fd  and ld  are the Euclidean distance between the 
extreme solutions and the boundary solutions of the 
obtained nondominated set and N  is the number of 
solutions from nondominated set.  The   low value for 
∆  indicate a better diversity and hence better the 
algorithm. 

3. C metric 
     Two sets of nondominated solutions can be 
compared Using C metric. For any two set A and B 
the C metric will be: 
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      TABLE I 
                            THE S AND ∆ METRICS 
Algorithm     PESA     SPEA2    NSGA II 
Metric S 0.000304616 

 
0.0000067874 0.000000574 

Metric ∆  0.865412859 0.8337976192 0.5967844252 

       Table I shows the S metric and ∆  metric 
obtained using all the three algorithms. NSGA II 
performs better as both S and∆  metric values are 
less than other two algorithms. 
 

TABLE VI 
    THE RESULTS OBTAINED FOR C METRIC 

          PESA        NSGA II       SPEA2 
       PESA           —        0.0000            0.0000      
   NSGA II        0.95790          —       0.2566         
      SPEA2        0.94627    .08534           — 

     The values 0.9579 on the second line, first column 
means almost all solutions from final populations 
obtained by NSGA II dominate the solutions obtained 
by PESA. The values 0 on first row means that no 
solution from the nondominated population obtained 
by SPEA 2 and by NSGA II is dominated by 
solutions from final populations obtained by PESA.  
The performance of the two algorithms NSGA II and 
SPEA 2 are almost same but closely analyzing the 
value of C we can conclude that NSGA II 
performance better than SPEA 2. 

                 V.CONVERGENCE CHARACTERISTICS 

The Pareto front generated by these three algorithms 
is depicted as: 
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                                                Figure 1.  PESA 
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                                                 Figure2.  SPEA 2 
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                                              Figure 3.  NSGA II 

 VI.CONCLUSIONS AND FURTHER WORK 

      In this paper a comparison of 3 multi-objective 
evolutionary algorithms for solving efficient 
weighting of assets portfolio optimization problem 
has been performed. The compared algorithms are 
PESA, SPEA2 and NSGA2. An assets set is 
considered for the numerical experiments. Results 
have shown that the NSGA II significantly 
outperforms the compared algorithms in all 
experiments. 
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