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ABSTRACT 
 

This paper focuses on Integer Linear Programming formulations for the Routing and 
Wavelength Assignment problem in Wavelength Division Multiplexed optical 
networks where end-users communicate with each other by establishing all optical 
WDM channels which are referred to as lightpaths. The RWA problem is reducible to 
Graph Coloring problem in polynomial time and hence found to be NP-complete. So, 
Soft Computing techniques, Approximation schemes and Heuristic approaches can be 
applied to solve the RWA problem. In this work, we propose new ILP formulations 
by imposing additional constraints to the objective function, thus establishing 
lightpaths which are immune to signal distortion and crosstalk. After modeling the 
RWA problem as an optimization problem, we focus on applying Soft Computing 
techniques like Genetic Algorithms to find a sub-optimal solution for the RWA 
problem. 
 
INTRODUCTION 
 
Wavelength Division Multiplexing (WDM) technology in all optical networks has been 
gaining rapid acceptance as a mean to handle the ever-increasing bandwidth demands of 
Internet users [1]. WDM technique exploits the huge bandwidth of optical fibers by 
overcoming the optoelectronic bottleneck at intermediate nodes. WDM optical networks [2] 
use lightpaths to exchange information between source-destination node pairs. A lightpath is 
an all optical logical connection established between a node pair. Given a set of connection 
requests, the problem of setting lightpaths by routing and assigning wavelengths to each 
connection is called the Routing and Wavelength Assignment (RWA) problem. 
 
Given a Demand matrix and the number of wavelengths supported by an optical fiber, the 
problem of maximizing the number of connection requests that can be established is known as 
MAX-RWA problem. Accordingly, the problem of establishing all the connection requests of 
a given Demand matrix using least number of wavelengths is termed as MIN-RWA problem. 
 
In the absence of wavelength conversion, it is required that the lightpath occupy the same 
wavelength on all fiber links it uses. This requirement is referred to as the Wavelength 
Continuity Constraint. However, this may result in the inefficient bandwidth utilization of 
WDM channels. Alternatively, the routing nodes may have limited or full range wavelength 
conversion capability, whereby it is possible to convert an input wavelength to a subset of the 
available output wavelengths in the network. Since lightpaths are the basic building block of 



WDM network architecture, their effective establishment is crucial. It is thus important to 
provide routes to the lightpath requests and to assign wavelengths on each of the links along 
the routes such that no two lightpaths that share a physical link use the same wavelength on 
that link. This requirement is known as Wavelength Distinct Constraint. 
 
The traffic assumptions [3] generally fall into one of two categories: static or dynamic. In 
static RWA models, we assume that the demand is fixed and known, i.e., all the lightpaths 
that are to be set up in the network are known beforehand. The objective is typically to 
maximize in accommodating the demand while minimizing the number of wavelengths used 
on all links. By contrast, in a stochastic/dynamic setting, we assume that lightpath requests 
between source destination node pairs arrive one by one at random, and have random hold 
times. A typical objective in this case would be to minimize the call blocking probability, or 
the total number of blocked calls over a given period of time. 
 
The Static Lightpath Establishment problem can be formulated as an Integer Linear Program 
which is found to be NP-Complete [4]. For large networks, randomized rounding heuristics 
[5] are used to convert the values of the variables of the ILP to either 0 or 1 thereby solving 
the routing sub-problem of the RWA problem. Once a route has been assigned to each 
lightpath, the number of lightpaths traversing any physical fiber link defines the congestion 
on that link. Assigning wavelength colors to the lightpaths, so as to minimize the number of 
used wavelengths under wavelength continuity constraint reduces to the following Graph 
Coloring problem in polynomial time. 
 
1. Construct a graph ),( EVG′  so that each lightpath in the system is represented by a node in 
the graph G′ . There is an undirected edge between two nodes in the graph G′  if the 
corresponding lightpaths share a common fiber link.  
2. Color the nodes of the graph G′  such that no two adjacent nodes have the same color and 
hence the minimum number of colors required for the node coloring problem of graph G′ is 
known as the chromatic number of G′ . 
 
Let )(G′ω be the size of the maximum clique and )(G′λ be the chromatic number of the 
graph G′ , then the following inequality holds: 

1)()()( +′≤′≤′ GGG δλω                                                                                                     (1) 
Where ))(|)(max()( GVuuG ′∈=′ δδ                                                                                 (2) 
Here, )(uδ defines the degree of node u . The degree )(uδ of node u is the number of edges 
connected to it.  
 
The above graph coloring problem is found to be NP-complete and the minimum number of 
colors needed to color the graph is difficult to determine. So, approximation schemes are used 
to find feasible solutions that are close to the optimal one. 
 
Let )(εA be the approximation scheme that produces a feasible solution for some 0>ε . 
Then, an approximation algorithm for the node coloring problem of graph G′ is an absolute 
one such that 1)()( ≤− IFAIFO where )(IFO produces the optimal solution for a problem 

instant I and )(IFA produces a feasible solution for the same problem instant I under the 
given approximation scheme. The complexity of the absolute approximation algorithm is 
found to be ))()(( GEGVO ′+′ .   
 
The DLE problem is more difficult to solve. So, we use heuristic methods [2] to solve both 
the routing sub-problem and wavelength assignment sub-problem. To solve the routing sub-
problem the heuristic options used are: Fixed Routing, Fixed Alternate Routing and Dynamic 



Routing. Among these, the protocol overhead for Fixed Routing scheme is most simple while 
Dynamic Routing scheme provides the best performance in term of blocking probability. To 
solve the wavelength assignment sub-problem, various heuristics used are Random 
wavelength assignment, First Fit wavelength assignment, Least Used (LU) wavelength 
assignment and Most Used (MU) wavelength assignment scheme. 
 
RELETED WORK  
 
 Various strategies have been proposed in current literature that addresses heuristic 
approaches to solve the RWA problem in all optical WDM networks. However, there are 
relatively few studies that investigate the performance of soft computing approaches to solve 
the RWA problem. A search of the IEEE Explorer database shows a published letter [6], 
where the Max-RWA model has been modified by introducing limited-range wavelength 
converters at the intermediate nodes. The optimization objective is to maximize the 
establishment of connection requests with least use of wavelength converters. The Max-RWA 
problem is formulated as an integer linear program and then solved using genetic algorithm. 
 
In [7], Zhong Pan developed a new Fitness Function to solve the routing sub-problem of the 
RWA problem using genetic algorithm. The objective was to route each lightpath in such a 
way that would minimize the number of wavelengths needed to honor all the lightpaths in the 
Demand matrix. The secondary target was to minimize the total cost in setting all the 
lightpaths. The cost was calculated in term of route-length traversed by a lightpath from 
source to destination node. 
 
In [8], D. Bisbal et al. proposed a novel genetic algorithm to perform dynamic routing and 
wavelength assignment in wavelength routed optical networks with no wavelength converters. 
By means of simulation experiments, they obtained a low average blocking probability and a 
very short computation time. Besides, by controlling the evolution parameters of the genetic 
algorithm, a high degree of fairness among the connection requests was achieved. They also 
developed an extension to the proposed algorithm with the aim at providing protection to the 
lightpaths in the optical layer. 
 
In previous linear formulations [4] for the RWA problem the paths that the source–destination 
pair is allowed to take had to be specified beforehand. This is called as the path formulation 
ILP. As the number of paths between a node pair is exponential to the number of nodes of the 
graph; the path formulation will have to restrict itself to a few paths per node pair. When only 
a limited number of paths are considered, the path formulation ILP approach may yield a sub-
optimal solution. In [9] Krishnaswami and Sivarajan proposed link based ILP formulations, 
i.e., the constraints are over the links (edges or arcs) of the network. The advantage of this 
formulation is that we do not specify the paths beforehand, but allow the Integer Linear 
Program solver to choose any possible path and any possible wavelength for a source–
destination pair and also the number of constraints in this formulation grow polynomially in 
the number of nodes.  
 
PROBLEM FORMULATION 
 
The WDM optical network can be viewed as a graph ),( EVG =  where V  is the set of 
routing nodes and E  is the set of edges in the network. Let W  be the set of wavelengths 
supported by every fiber link in the optical network. Then a lightpath can be expressed as a 
path-wavelength vector w

px ; where p is a physical path between the source and destination 
node pair and w  is the contiguous wavelength assigned to every fiber link of that physical 
path. Here, we are considering the connection requests individually, i.e., we are not grouping 
the connection requests according to their source-destination pairs. Let K  be the set of 



lightpaths to be established. Then the lower bound on the number of wavelengths supported 
by a fiber link can be formulated as: 

E

k
W Kk

∑
∈≥                                                                                                                              (3) 

 
The lower bound justifies the minimum number of wavelengths that should be supported by 
every fiber link of the network such that all lightpaths in the set K  can be realized. This 
lower bound is known as aggregate network capacity bound. Here, 

=k  Length of a lightpath in term of all fiber links Ee∈  traversed by it from source to 
destination edge node 

=E  Number of fiber links in the optical network 
 
In our proposed work, we work on classical ILP formulations [4-6] [9] based on the literature 
survey and propose new ILP formulations by imposing additional constraints to the objective 
function thereby establishing lightpaths which are immune to signal distortion and crosstalk. 
A constraint on the number of intermediate hops traversed by a lightpath ensures less 
crosstalk accumulated by it while in the absence of wavelength continuity constraint, a 
restriction on the number of wavelength converters used by a lightpath ensures less signal 
distortion. 
 
First ILP Formulation 
 
Here, we group the connection requests according to their source-destination node pairs that is 
the set of lightpaths K  can be viewed as ∑=

ji
jiKK

,
),(  where ),( jiK  is the set of all 

lightpaths between source node i  and destination node j . Our basic objective is to maximize 
the number of established connection requests and hence to reduce the average blocking 
probability associated with a connection request. The variables of interest are defined as 
follows. 

=),( jick This variable is set to 1 if thk lightpath between the node pair ),( ji has established, 
otherwise it is reset to 0. 

=),( jic w
k This variable is set to 1 if the thk lightpath between the node pair ),( ji has 

established with wavelength w , otherwise it is reset to 0. 
 =),(, jic ew

k This variable is set to 1 if the thk lightpath has established with wavelength w on 
link e . 
Let, D is the Demand matrix where ijD returns a positive integral value such that 

ijDjiK =),(   
The proposed ILP can be outlined as: 

∑ ∑
> ∈0:),( ),(

),(
ijDji jiKk

k jicMaximize where VVji ×∈),(                                                             (4)     

Subject to: 
1. Wavelength Continuity Constraint: 

∑
∈

≤
Ww

w
k jic 1),(  for all  ),( jiKk ∈  and  0:),( >×∈ ijDVVji                                   (5) 

The continuity constraint justifies the use of at most one wavelength to honor a 
lightpath between a source-destination node pair.  
2. Wavelength Distinct Constraint: 



∑ ∑
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≤
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k jic  for all EeWw ∈∈ ,                                                            (6) 

This constraint tells that a particular wavelength of a particular link can be at best allocated to 
a single lightpath.  
3. Demand Constraint: 

∑
∈

≤
),(

),(
jiKk

ijk Djic  for all 0:),( >×∈ ijDVVji                                                              (7) 

This constraint signifies that the number of established lightpaths between a node pair can not 
be greater than its maximum demand.  
4. Integer Constraint: 

}1,0{),(),,(),,( , ∈jicjicjic ew
k

w
kk  for   all  EeWw ∈∈ ,   and    0:),( >×∈ ijDVVji  

                                                                                                                                                  (8) 
This constraint enforces the ILP solver not to keep fractional values in the variables 
concerned.                                                                                                                                                                  
5. Wavelength Reservation Constraint: 
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),( ),(

,, 0),(),(
jiKk ve jiKk ve

ew
k

ew
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and 0:),( >×∈ ijDVVji where Vv∈                                                                             (9)                                  
This constraint tells that the number of lightpaths between a node pair entering and leaving an 
intermediate node v on a particular wavelength w must be reserved. 
6. Consistency Constraint among variables: 

),(),(),(, jicjicjic k
w
k

ew
k ≤≤  for      all EeWw ∈∈ , and 0:),( >×∈ ijDVVji    (10) 

The consistency check among the variables of the ILP is straightforward. 
7. Hop Count Constraint: 

Hjic
Ee Ww

ew
k ≤∑∑

∈ ∈

),(,  for  all ),( jiKk ∈ and 0:),( >×∈ ijDVVji                           (11) 

This constraint enforces us to keep a limit on the number of intermediate hops used by a 
lightpath so as to ensure less crosstalk accumulated by it. Here, H is the upper bound on the 
number of hops that can be used by a lightpath and can be calculated from the diameter of the 
graph G . The diameter )(Gd of the graph G can be calculated as follows: 

))(,|),(max()( GVjijidGd ∈=                                                                                       (12) 
Here, ),( jid is the distance between the node pair ),( ji and calculated as the minimum 
number of edges in a path from node i to node j . The value that is to be chosen for H can not 
be less than )(Gd and hence represented as: 

α+= )(GdH                                                                                                                       (13) 
The value for α  is dependent on which heuristic we use to solve the routing sub-problem of 
the RWA problem. 
 
Second ILP Formulation 
 
Here, we modify the first ILP formulation by eliminating the variable ),( jick  and thus 
making the second ILP more efficient one. For the sake of brevity, we are outlining the 
modifications over the first ILP only. The objective function can be modified as: 

∑ ∑ ∑
> ∈ ∈0:),( ),(

),(
ijDji jiKk Ww

w
k jicMaximize where VVji ×∈),(                                                  (4a) 

 
The Demand Constraint of the previous ILP can be replaced as: 

∑ ∑
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≤
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w
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Modifications over the Integer Constraint and Consistency Constraint are straightforward and 
depicted as: 

}1,0{),(),,( , ∈jicjic ew
k

w
k  for  all EeWw ∈∈ , and 0:),( >×∈ ijDVVji                (8a)                                  
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Third ILP Formulation 
 
The above two proposed ILP formulations are applicable to networks where wavelength 
continuity constraint is maintained. Here, we modify the above two proposed linear 
formulations so that they can be applied to networks where wavelength continuity constraint 
is relaxed. In a network with sparse wavelength conversion capability, some of the nodes are 
equipped with wavelength converters and hence wavelength continuity constraint can be 
modified as: 

∑
∈

≤
Ww

w
k jic β),( for all ),( jiKk ∈ and 0:),( >×∈ ijDVVji                                      (14) 

Where β denotes the upper bound on the number of wavelength converters the can be used 
by a lightpath and a low value on β  ensures low signal distortion. 
At nodes without wavelength converters: 

),(),( 2,1, jicjic ew
k
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At nodes equipped with wavelength converters: 
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If all the routing nodes of the optical network are equipped with limited range wavelength 
converters with degree of conversion ,Δ then equation (16) will be replaced with the 
following equations. 

∑
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SOFT COMPUTING APPROACHES FOR THE RWA PROBLEM 
 
This section presents meta-heuristic approaches that allow us to solve large problem instances 
of the RWA problem. Heuristic approaches become important when the problem instant gets 
large due to increase in size of the physical network and traditional ILP solvers like Simplex 
method can not produce an exact solution in polynomial time due to the computational   
constraints. Results of these heuristic approaches compare favorably with the optimal results 
obtained by solving the exact problem formulation. 
 
Genetic Algorithms Based Heuristic Approach to Solve the RWA Problem 
 
Genetic Algorithms are a class of probabilistic searching algorithms based on the mechanism 
of biological evolution. A GA (Genetic Algorithm) begins with an initial population of 
individuals (also called chromosomes); each of which represents a feasible solution to the 
problem being tackled. Then the GA applies a set of genetic operations such as crossover or 
mutation to the current population to generate a better one. This process is repeated until a 
good solution is found or after predefined number of iterations. [10] 
 
For the sake brevity, here, we only describe the proposed fitness function that can be used to 
discriminate the chromosomes in the current population such that fitter chromosomes will 



have better chance to be selected and propagate their genetic materials to the successive 
generations. The proposed fitness function is the target function to be maximized can be 
outlined as: 

)(1.01.0))((8.0
1_

plhWu
funfit

++
=                                                                          (17) 

The above proposed fitness function is applicable to the network which is assumed to be static 
and circuit-switched. The fiber links are bidirectional. There is no limit on the number of 
wavelengths a fiber can carry. The symbols of the fitness function with their usual meanings 
are described as follows: 

=)(Wu The number of wavelengths used to honor all the static lightpaths and defines the 
congestion of the most congested link in the network 
=h The maximum number of hops traversed by a lightpath in a chromosome 

=)( pl The maximum length of a lightpath in a chromosome and the square root is used to 
maintain normalization among too good chromosomes and too bad chromosomes 
 
The working of the algorithm to solve the RWA problem is described as follows. 
(i) The chromosome is a group of vectors where each vector ip is a lightpath represented as 
( ) Vnnnn iihiiihi ∈)(0)(0 ,...;... and )(ih     represents the number of intermediate hops 

traversed by the lightpath and 0in is the source node and )(iihn is the destination node for the 
lightpath. 
(ii) To create the initial population, we take the help of dynamic routing heuristic [3] that 
collects all possible routes from the source node to the destination node. 
(iii) The chromosomes of the next generation are selected from the current population by a 
spinning roulette wheel method. [10] 
(iv) According to a cross-over rate, we apply two-point crossover genetic operator technique 
for mating two selected chromosomes rendering two new chromosomes. Similarly, according 
to a certain mutation rate, a chromosome is mutated with randomness and the resulting 
chromosome is supposed to be a fitter one. 
 
SIMULATION AND RESULTS 
 
The standard network considered for simulation is ARPANET shown in Fig. 1; which has 20 
nodes connected with 25 links. The genetic algorithm is implemented and simulated for this 
network with different set of connection requests and the result is obtained for the number of 
wavelengths required to establish these requests as shown in Fig. 2. 

 
 

Fig. 1 ARPA Network 



 
 

Fig. 2 No of Lightpath Vs. No of Wavelengths Required 
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