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Abstmct - Classical approach to modelling is quasi- 
empirical relationship based on experiments on single 
artificial voids of well defined geometry. Such meth- 
ods restrict the validity to the range of inputs con- 
sidered. Keeping all this in view, this work attempts 
at applying Artificial Neural Network (ANN) for the 
modelling in order to exploit flexibility of ANN mod- 
elling with a short time for development and reason- 
ably high accuracy. The results indicate good agree- 
ment of the estimates with the published values with 
a M A E o f a s l o w a s l % .  

I., INTRODUCTION 

The continuity.of electricity is of utmost impor- 
tance to all our activities in day to day life. This 
is enenred by having reliable insulation system in 
the power apparatus. Partial Discharge (PD) test- 
ing is gaining wide acceptance as a non-destructive 
test tool for assessment of insulation [I], [2]. By na- 
ture any discharge or breakdown taking place in the 
bulk of the insulation without bridging the electrodes 
is termed as ‘Partial Discharge’. Voids or gaseous in- 
clusions in the bulk of the insulation, which are dis- 
tributed randomly either due to natural defects or 
by way of manufacturing are the potential sites of 
such discharges. Hence, any attempt at modelling 
the phenomenon in a void would go a long way in 
assessing the insulation quality. 
This paper details PD modelling from two angles : 
1. from fundamental view point, considering the 

modelling for PD inception voltage (PDIV) and 
PD extinction voltage (PDEV) as a function of 
void dimensions for single artificial disk shaped 
void in sheet samples and 
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2. modelling of PDIV for a power apparatus, viz., 

Artificial Neural Network (ANN) with adaptivity 
and nonlinearity are well suited to function estima- 
tion tasks, particularly where the equation describ- 
ing the function is unknown. In function estimation 
application ANN acts as a model which stands for 
the system it represents, typically to predict or con- 
trol it. Among the various ANNs presented so far, 
the present work employs a Multilayer Feedforward 
Network (MFN) with Back Propagation Algorithm 
(BPA) with and without adaptive learning. 

and momentum con- 
stant, a on the convergence property of the learning 
process is extensively studied and the best combina- 
tion is identified. In addition, number of nodes in 
the hidden layer are also varied to see their effect on 
the convergence rate. Further, an attempt is made 
to  assess the effect of number of hidden layers on the 
convergence characteristics. 

Epoxy-resin Post Insulators. 

The effect of learning rate, 

11. MULTILAYER FEEDFORWARD NETWORK 

Artificial Neural Networks are characterized by 
their topology, that is, by the number of intercon- 
nections, the node characteristics that are classified 
by the type of nonlinear elements used and kind of 
learning rules employed. [3], [4], [5]. These rules spec- 
ify an internal set of weights and indicate how the 
weights should be adapted during use to improve the 
performance. 

The ANN is composed of an organised topology of 
Processing Elements (PE), called neurons. Although 
a single neuron can perform certain simple functions, 
like, multi-input nonlinear device, the power of neu- 

0-7803-58 12-0/00/$10.0092000IEEE 

21 5 



ral computation comes from connecting neurons into 
networks. In MFN, the PES are arranged in lay- 
ers and only PES in adjacent layers are connected as 
shown in the Figure 1. 

Yl 

Y2 

Input Hidden output 
layer layer layer 

Fig. 1. Schematic diagram of a Multilayer Feedforward 
Network 

MFN is the most popular connectionist model that 
has been playing a central role in the application of 
neural networks. It consists of an input layer, one 
or more hidden layers and an output layer. The in- 
formation propagates only in the forward direction 
and there are no feedback loops. The number of 
PES and hidden layers may be chosen carefully, so 
as to optimize the performance of the network. Each 
connected pair of neurons are associated with an ad- 
justable value that is referred to  as the weight or 
synapses. The total input to a neuron is the weighted 
sum of neuron outputs from the previous layer. A 
neuron’s output is computed by feeding its threshold 
input through a nonlinear squashing function to limit 
its output. A bias term is often incorporated at each 
neuron to improve the convergence. 

In order to obtain bounded output from PES a sig- 
moidal activation function is chosen such that the 
output is limited to  ( 0, 1 ) for an input range of ( 
--oo,oo ). 

A. LEARNING PROCESS I N  ANN 
Essentially, the ANN evolves a nonlinear mapping 

between the input and output patterns during the 
learning phase. The learning process in this work, 
employs a learning rule called the BPA, alternately 
known as Generalised Delta rule, which is an iterative 

gradient technique that performs the input-output 
mapping by minimizing the cost-function. Most 
learning procedures use a gradient descent method to 
find an optimal set of connection weights. The train- 
ing examples are presented over and again in ran- 
dom order and the weights and biases are updated 
depending on the negative gradient of the respec- 
tive output ‘error until the error reaches an accept- 
able minimum. This is called a supervised learning 
scheme. 

B.  SCALING OF INPUT-OUTPUT PATTERN 

Scaling of input-output patterns is an important 
aspect of the design of the ANN. A suitable range of 
scaled input patterns often results in rapid conver- 
gence and good recognition ability, which may oth- 
erwise lead to  saturation. Also, it is obvious that for 
the sigmoidal activation function the output range 
of the ANN must lie within (0,l). Thus, the input- 
output pattern are scaled in the range of (0,l) before 
the initiation of the training of the ANN. 

In this case each input or output data zi is nor- 
malized as p; before being fed to the ANN according 
to  

d = 1,2,...,n (1) 
xi  pi = - 

xmax ’ 
where x; and xmcx are the actual data and the max- 
imum value of the input or output patterns respec- 
tively 

C. ON-LINE A N D  BATCH LEARNING 

There are two basic approaches adopted to Ipini- 

1. On-line learning and 
2. Batch learning. 

mize the global error function, E [3]. They are : 

In an on-line learning, the patterns are presented se- 
quentially, usually in a random order. For each learn- 
ing example the weights are changed proportional 
to the respective negative gradient of the local error 
function, Ep. 

Now, if the learning rate, 77 is sufficiently small, on- 
line procedure minimizes the global error function, 
E = E, Ep [16]. 

On the other hand, in a batch learning, the total 
error function, E is minimized in such a way that 
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the weight changes are accumulated over all learning 
examples before the weights are actually changed. 

The relative effectiveness of the on-line and batch 
learning procedures is highly dependent on the prob- 
lem, but the on-line algorithm seems superior in most 
cases primarily because [3] : 

1. On-line procedure introduces some randomness 
(noise) that often helps in escaping from a local 
minima. 

2. On-line procedure is faster and more effective 
than the standard batch procedure. 

D. EVALUATION CRITERION 

There are two qualitative measurements revealing 
the status of the learning process or the status of 
function estimation [5],  [SI. One is the mean sum 
squared error of the training data (Et l ) ,  the other is 
the mean sum squared error of the test data (Et , ) .  
They are defined as 

where Tp and 0, are the target and the calculated 
output respectively corresponding to the training 
data pattern and p is the number of training pat- 
terns, and 

(3) 
1 

s s  
= - (TS  - 03)2 

where T, and 0, are the target and the calculated 
output respectively computed by forward propaga- 
tion of the corresponding test data pattern a id  s is 
the number of test patterns. The network tends to 
interpolate training data as Et, approaches zero. The 
Et, tells how well the network is adapted to fit the 
training data only, even if the data are contaminated. 

On the other hand, the Ets indicates how well a 
trained network behaves on a new set of data, which 
are not included in the training set. This behaviour 
is known as generalization. Since, it is assumed 
that there are no errors in the test data, Et, cor- 
rectly reflects, how well a trained network has learned 
from the training data to approximate the underly- 
ing function. Therefore, Et, is the criterion for an 
evaluation of the performance of a trained network 
in function estimation. , 

As a matter of fact, in this study, some'models are 
trained on the basis of&,, while others are on the 
basis of minimum Et,. As Et, reduces with number 
of iterations, the models based on Et, are trained 
only up to a certain number of iterations. 

E. ADAPTIVE BACKP ROPAGATION ALGORITHM 
It is very clear that 7 and a have a very signifi- 

cant effect on the learning speed of the BPA. A large 
value of 7 results in a faster convergence but often 
leads to oscillations. Whereas, a small value of the 21 
stabilizes the process but results in a slower conver- 
gence and increases the ANN susceptibility of getting 
entrapped in a local minima. Similarly, an increase 
in Q when connection weights are updated in correct 
directions (that is, if there is a reduction in the er- 
ror) improves convergence. On the other hand, if the 
update direction is wrong (that is, if there is an in- 
crease in the error), the value of a should be reduced 
to improve the convergence. 

Research into dynamic change of the q and a of the 
BPA has been carried out by many authors [7], [SI. A 
simple method of updating the r , ~  and a is presented 
by Jacob [i']. Yu, Chen and Cheng [8] observe that 
the optimal 7 varies almost randomly from iteration 
to iteration. 

Based on this approach and with a knowledge of 
the immediate preceding error signal, an adaptive 
BPA with a dynamic r , ~  and a developed.for the 
present work can be given as follows: 

r , ~ ( k : +  1) = 0.99q(k); ifAE(k) < 0 (4) 

= q(k); ifAE(k) 2 0 (5)  
and a ( k  + 1) = 1.005a(k); ifAE(k) < 0 

= 0.999a(k); ifAE(k) 2 0 (6) 

where 
AE(lc) = E ( k )  - E(k  - 1) (7) 

and E ( k )  is the training error at k th  iteration. 
The algorithm begins with an initial value of 7 zind 

gradually reduces as the learning progresses. Start- 
ing value of a is chosen as 0.9. The maximum and 
minimum value of a is specified as 0.99 and 0.5 re- 
spec tively. 
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111. RESULTS A N D  DISCUSSIONS 

In dl four models are presented here which corre- 
late the PD quantities, namely, PDIV , PDEV and 
PD inception stress to the PD parameters, such as, 
insulation thickness, void diameter, void depth, pres- 
sure of the gas inside the void and the physical di- 
mensions of the post insulators. The effect of void 
location and electrode material on PD inception volt- 
age are also studied. 

In Model - I, PDIV across void, vi is estimated as a 
function of PD parameters, like, insulation thickness, 
t, void depth, tl and void diameter, d. The network 
is trained employing 10 sets of input - output data 
taken from the literature [9]. Since, only a few sets of 
input-output patterns are available here, same data 
sets are used for the testing of the network also, on 
completion of the training. It is found that modelled 
values closely follow the calculated value of the PDIV 
across the void and a Mean Absolute Error (MAE) 
of 1.3133 % is obtained [lo]. 

In Model - 11, modelling of discharge inception volt- 
age across void, vi and inception stress E! based on 
void depth and gas pressure are the prime consider- 
ation. The requisite training data are obtained from 
the experimental studies, due to Hall and Russek 
[ll].  The learning process of the network is carried 
out with 29 input patterns. On completion of the 
training, the ANN is tested with 6 patterns, which 
are excluded while training. Detailed studies are car- 
ried out to determine the ANN parameters which give 
the best results. The results show that MAEs of the 
ANN outputs are found to be 3.26 % and 1.98 % re- 
spectively for void inception voltage, v: and stress, 
El. Further, the estimates of void inception volt- 
age by ANN are compared with theanalytical results 
obtained from empirical relations proposed by other 
researchers [ll], [12] and are found to be in good 
agreement [13]. 

In Model - 111, an attempt is made to estimate 
the PDIV of solid dielectrics based on void diame- 
ter, d,  void depth, t l  and dielectric sample thickness, 
t. The ANN is trained with 10 sets of input-output 
patterns based' on the data, due to Mason [9], con- 
sisting of the calculated values of PDIV, v; and PD 
parameters, namely, void diameter, d, void depth, t l  

and dielectric sample thickness, t. These data sets 
correspond to the void location within the bulk of 
a dielectric sample (polythene) placed between two 
brass electrodes. On completion of training, the vi 
value is estimated by the network with the data cor- 
responding to a void located between an electrode 
(brass) and the dielectric sample. Simultaneously, 
the network is also tested with data corresponding 
to the other electrode material, that is, when dielec- 
tric sample is placed between steel electrodes. The 
main intention of such a modelling is to observe the 
effect of void location and the electrode material on 
PD. An examination of the estimates reveals that the 
PDIV does not depend on the position of void loca- 
tion and electrode material used but depends on the 
PD parameters [14], which validates the observations 
of earlier researcher [ 111. 

In Model - IV, PDIV is estimated as a function 
of physical dimensions of the post insulator, namely, 
creepage length and electrode spacing. The mod- 
elled results show a very close relationship with the 
experimentally measured value [ 151. The proposed 
modelling of PDIV, v; is carried out using the data 
obtained from the experiments under 50 Hz ac sup- 
ply. Out of the 17 sets of experimental input - output 
patterns, 12 sets of input - output patterns (arbitrar- 
ily chosen) are utilized to train the network and the 
remaining 5 sets are used for testing purposes 

The combination of ANN parameters for the best 
results in each of the models have been identified. 
Table I shows the combination of ANN parameters 
obtained for the best results for the models consid- 
ered. 

A. COMPARISON OF ON-LINE AND BATCH 
PROCEDURE OF TRAINING 

Figure 2 shows the MSSE distributions of the 
test data as a function of number of iterations for 
on-line and batch procedure of training the network 
for Model- 111. From the figure it is clear that the 
on-line procedure is more effective for the proposed 
estimation work. 
B. COMPARISON OF ADAPTIVE ALGORITHM WITH 

CONVENTIONAL BPA 

To see the effectiveness of the adaptive algorithm 
over the conventional BPA, the variation of MSSE 

218 



Number 

III 0.25 
Iv 0.1 

a Number of Number of Number of Evaluation 

0.9 1 3 2000 Et, 
0.95 2 6 2500 Etr 
0.9 1 6 3000 Eta 
0.9 1 6 200 Eta 

Hidden Layers Neurons iterations criterion 

0.24 

0.20 

0.16 

60.12 

0.08 

0.04 

0.00 

Algorithm 
adopted 

Batch-mode 
Batch-mode 

On-line 
Adaptive 

- On-line 
Batch - - - -  

Fig. 2. Variation of Mean sum squared error as a func- 
tion of iterations for On-line and Batch procedure of 
learning (Model -111 

of the test data as a function of the number of it- 
erations for Model- IV is presented in Figure 3. As 
can be seen, the network, converges much faster in 
case of adaptive algorithm. The minimum value of 
Et, is also lower. A minimum value of Et, = 0.0197 
is obtained after 200 iterations in case of adaptive 
algorithm as compared to a minimum d u e  of E,, 
= 0.0610 after 400 iterations in case of conventional 
BPA. 

Finally, the PDquantities = f( PDpazameters) 
for the test data are calculated simply by passing the 
input data in the forward path of the network and 
using updated weights of the network. A comparison 
of modelled and experimental results indicates that 
ANN can be very well employed for estimation of PD 
quantities as a function of PD parameters. 

0.30 

0.20 

d 
0.10 

0.00 

Fig. 3. Variation of MSSE of the test data as a func- 
tion of the Number of iterations for Conventional and 
Adaptive BPA 

Iv. CONCLUSIONS 

1. Though Rumelhart and McClelland [16] suggest 
learning rate, q = 0.25 and momentum factor, 
a = 0.9 yield good results for most applications, 
this work indicates that it is not always so, which 
is in agreement with the Anding of Satish and 
Zaengl[17] and Chakravorti and Mukherjee [18], 
that is, best results are seen to yield even for 
other values of 9 and a. 

2. This study indicates that in MFN, the upper- 
bound on the number of neurons in the hidden 
layer follow Hecht-Nielsen [5] criterion. 

3. Comparative analysis of the modelled "Its 
with the results obtained from the empirical re- 
lations given by earlier researchers demonstrate 
the effectiveness of ANN in modelling an insu- 
lation system with unknown nonlinear relation- 
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skip. On a comparison with the experimental 
data, the estimates of void inception voltage us- 
ing ANN are found to be within a MAE of 3.26 
% while the MAE of the estimates obtained us- 
ing the empirical relations proposed by Hall and 
Russek [ll] and Bania and Raghuveer [12] are 
4.89 % and 5.77 % respectively. 

4. An ANN can model effectively the PD quantities 
within a small MAE as small as 0.65 % even if 
the number of input patterns are small. 

5. The on-line procedure of learning is more effec- 
tive for function approximation as compared to 
batch procedure of learning. This is in agreement 
with Cichocki and Unbehauen [3]. 

6. The adaptive learning has definitely a better 
convergence effect as well as sometimes the accu- 
racy of the modelling data increases. Moreover, 
one need not worry about the choice of the learn- 
ing parameters, that is, the learning rate and the 
momentum constant. 
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