
                                                                                                                                                                                                                                            

 

 

 

Abstract— The moto of portfolio optimization is to find 

an optimal set of assets to invest on, as well as the optimal 

investment for each asset. This optimal selection and 

weighting of assets is a multi-objective problem where 

total profit of investment has to be maximized and total 

risk is to be minimized. In this paper the Portfolio 

optimization is solved using three different multi-objective 

algorithms and their performance have been compared in 

terms of pareto fronts, the delta, C and S metrics. 

Exhaustive simulation study of various portfolios clearly 

demonstrates the superior portfolio management 

capability of NSGA II based method compared to other 

two methods. 

 

Index Terms— Multi-objective optimization, Pareto-

optimal solutions, global optimization, Crowding distance, 

Pareto front. 

I.INTRODUCTION 

Massive investment to different products like 

pension funds, banking insurance policies, stock 

exchange and other series of financial assets is one of 

the complex problems in financial management. The 

choice of an appropriate investment portfolio is an 

important task for a portfolio manager.   

Optimal selection of stock exchange assets as well 

as the optimal investment for each asset is a well 

known portfolio optimization problem. Portfolio 

optimization is a complex task as it depends on 

various factors like assets interrelationships, 

preference of the decision makers and resource 

allocation.  When investing money in a set of stock 

exchange assets, the investors are interested in 

obtaining the maximum profit of an investment and 

minimum risk simultaneously. This optimization 

problem has many constraints like (i) the number of 

assets a portfolio can contain is fixed and finite (ii) 

the minimum and maximum amount of possible 

investments for each chosen assets.  In the present 

research, the financial assets are modeled by 

probability distribution. The portfolio profit is 

measured by average of individual profits of all 

assets and the risk involved is described by variance.  

Choosing an optimal portfolio weighting of assets, 

when their future rate of return is uncertain can be 

viewed as a problem of minimizing the uncertainty 

for a given level of the portfolio expected return. The 

risk involved in an investment is less important as its 

contribution to total portfolio risk. By suitably 

combining a risky investment with a safer one is 

possible to reduce the total risk associated to that 

portfolio. Thus the portfolio selection task can be 

formulated as a multi-objective optimization 

problem. Some research work has been reported in 

this area. However there is no comparative study 

between these algorithms to assess the relative merits 

and demerits between these algorithms. Such an 

investigation will guide the investor for optimum 

portfolio selection. In this paper we consider a multi-

objective portfolio assets selection and optimal 

weighting of assets where the total profit is 

maximized while total risk is minimized 

simultaneously. The present study employs PAES, 

APAES and NSGA II for modeling the Pareto front 

and for optimizing the portfolio performance. The 

results obtained with these three algorithms are 

finally compared by performing different numerical 

experiments.        

Section II outlines the multi-objective optimization 

formulation of portfolio management. In Section III 

some of the multi-objective evolutionary techniques 

used in this paper are dealt. Simulation studies based 

on several numerical experiments are carried out in 

Section IV. The results in terms pareto fronts 

between risk and return are shown in Section V. 

Conclusions and further research work directions are 

discussed in the Section VI. 

II. MULTI-OBJECTIVE FORMULATION OF 

PORTFOLIO  

A portfolio p  consists of N  assets. Selection of 

optimal weighting of assets (with specific volumes for 

each asset given by weights ( iw ) is to be found.  
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Where  N   is the number of assets available, iµ  is 
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the expected return of asset i , ijσ  is the covariance 

between assets i and j , and iw  is the decision 

variables which provides the composition of the 

portfolio. pρ  
is the standard deviation of portfolio 

and pα  is the expected return of portfolio.  

 The multi-objective portfolio optimization 

problem involves two competing objectives (i) 

minimize the total variance, denoting the risk 

associated with the portfolio expressed in (1) (ii) 

maximize the return of the portfolio shown in (2). 

The problem is thus to find portfolios amongst the N 

assets that satisfy these two objectives 

simultaneously. Equation (3) provides the budget 

constraint for a feasible portfolio.  

  III. MULTIOBJECTIVE OPTIMIZATION 

     In a single-objective optimization problem, an 

optimal solution is the one which optimizes the 

objective with certain associated constraints. It is not 

possible to find a single solution for a multiobjective 

problem and due to the contradictory objectives a set 

of solutions is obtained.  The general multi-objective 

minimization problem involves minimization of  n   

objective functions: 
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     The solution to this problem is more complex than 

the single-objective case, and the idea of Pareto-

dominance is used to explain it. Consider first an 

objective function 
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A point 
−

1x  with an objective function vector 
−

1F  , is 

said to dominate point 
−

2x  , with an objective 

function vector 
−

2F , if no component of 
−

1F is greater 

than its corresponding component in 
−

2F  , and at 

least one component is smaller. Similarly, 
−

1x is said 

to be Pareto-equivalent to 
−

2x  if some components of 

−

1F are greater than 
−

2F  and some are smaller. Pareto-

equivalent points represent a trade-off between the 

objective functions, and it is impossible to infer that 

one point is better than another Pareto equivalent 

point without introducing preferences or relative 

weighting of the objectives. 

     Therefore the solution to a multi-objective 

optimization problem is a set of vectors which are not 

dominated by any other vector, and which are Pareto- 

equivalent to each other. This set is known as the 

Pareto-optimal set. Grouping these Pareto optimal set 

generates a plot, often discontinuous known as the 

Pareto front or Pareto border. Its name refers to 

Vilfredo Pareto [4], who generalized these concepts 

in 1896.      

IV. MULTIOBJECTIVE EVOLUTIONARY 

ALGORITHMS 

     The classical optimization techniques are 

ineffective for solving constrained optimization 

problem such as portfolio management. This short 

coming has motivated researchers to develop multi-

objective optimization using evolutionary techniques. 

Based on basic concepts from the biological model of 

evolution, the search dynamic of multi-objective 

evolution algorithm (MOEA) is guided by 

biologically inspired evolutionary operators like 

selection, crossover and mutation.  The crossover and 

mutation operator change and create potential 

solutions while the selection operator provides the 

convergence property. When MOEA is applied for 

portfolio optimization, issues like representation, 

variation operator and constraint handling techniques 

are considered. MOEA maintains a population of 

chromosome, where each of them represents a 

potential solution to the portfolio optimization 

problem. One chromosome represented by a weight 

vector, provides the composition of the portfolio.  

The weights are normalized to one to satisfy the 

budget constraint given in (3) 

Let 
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Then the new values for each element of weight 

vector are normalized. 
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The normalized chromosomes then became 
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      In this paper we compared the portfolio 

optimization performance achieved by of three 

recently developed multi-objective evolutionary 

algorithms. These are Pareto Archived Evolution 

Strategy (PAES), Adaptive Pareto Archived 

Evolution Strategy (APAES) algorithm and Non 

dominated Sorting Genetic Algorithm II( NSGA II) 



for selection and optimal weighting of assets in 

portfolio optimization problem.  

    Knowles and Corne [1] have suggested a simple 

evolutionary algorithm called Pareto Archived 

Evolution Strategy (PAES). In this algorithm one 

parent generates one offspring by mutation. The 

offspring is compared with the parent. If the offspring 

dominates the parent, the offspring is accepted as the 

next parent and the iteration continues. If the parent 

dominates the offspring, the offspring is discarded 

and the new mutated solution is generated which 

becomes a new offspring. If the offspring and the 

parent do not dominate each other, a comparison set 

of previously non dominated individuals is used. For 

maintaining population diversity along Pareto front, 

an archive of non dominated solutions is considered. 

A new generated offspring is compared with the 

archive to verify if it dominates any member of the 

archive. If yes, then the offspring enters the archive 

and is accepted as a new parent. The dominated 

solutions are eliminated from the archive. If the 

offspring does not dominate any member of the 

archive, both parent and offspring are checked for 

their nearness with the solution of the archive. If the 

offspring resides in the least crowded region in the 

parameter space among the members of the archive, 

it is accepted as a parent and a copy is added to the 

archive.  

    The APAES proposed by Abraham and Grosan [2] 

can be considered as an adaptive representation of the 

standard PAES. When the current solution dominates 

the mutated solution for a consecutive fixed number 

of times it means that the representation of current 

solution has no potential for exploring the search 

space from the place where it belongs. Therefore the 

representation of the current solution must be 

changed in order to ensure a better exploration.  

    Dev and Pratab [3] have proposed NSGA II where 

selection criteria are based on the crowding 

comparison operator. Here the pool of individuals is 

split into different fronts and each front has assigned 

a specific rank. All individuals from a front iF  are 

ordered according to a crowding measure which is 

equal to the sum of distance to the two closest 

individuals along each objective. The environmental 

selection is processed based on these ranks. The 

archive will be formed by the non dominated 

individuals from each front and it begins with the 

best ranking front. Here the new population obtained 

after environmental selection is used for selection 

crossover and mutation to create a new population. It 

uses a binary tournament selection operator. These 

algorithms are dealt in sequel. 

A. PAES algorithm  

repeat 

    Generate initial random solution c and add it to    

     archive Mutate c to produce m and evaluate m 

if c dominates m 

     discard m 

else 

       if m dominates c 

      then replace c with m and add m to the archive 

else 

       if m is dominated by any member of the archive 

      discard m 

else apply test (c, m, archive) to determine which   

       becomes the new current solution and whether to  

       add m to the archive 

endif 

endif 

endif 

until a termination criterion has been reached 

B.APAES algorithm 

repeat 

      Generate initial random solution c and add it to   

      archive 

      k = 0 

      Mutate c to produce m and evaluate m 

 If   c dominates m 

 then  k = k + 1; 

 if k = Maximum number of harmful mutations 

 then  change the representation for the current  

           solution (i.e. mutate the alphabet over 2 which  

           the current solution is represented);  

            k = 0 

 elseif   m dominates c 

 then     replace c with m and add m to the archive 

 elseif   m is dominated by any member of the archive 

 then    discard m 

 else     apply test (c, m, archive) to determine which           

             becomes the new current solution and               

             whether to add m to the archive 

endif 

endif 

endif 

until a termination criterion has been reached 

C. NSGA II Algorithm 

1.  Initialize population 

2. Generate random parent population 0p  of size N  

3.  Evaluate objective Values 

4. Assign fitness (or rank) equal to its non dominated 

level 

5. Generate offspring Population 0Q  of size N    

with binary tournament selection, recombination and 

mutation. 

6. For 1=t  to Number of Generations 

6.1 Combine Parent and Offspring Populations 



6.2 Assign Rank (level) based on Pareto       

Dominance. 

6.3 Generate sets of non-dominated fronts 

6.4 until the parent population is filled do 

6.4.1 Determine Crowding distance between  

          points on each front iF  

6.4.2 Include the ith  non dominated front in  

          the next parent population ( )1tP +  

6.4.3 check the next front for inclusion 

6.5 Sort the front in descending order using  

      Crowded comparison operator 

6.6 Choose the first N  - card ( )1+tP elements          

       from front and include them in the next  parent   

       population ( )1+tP   

6.7Using binary tournament selection,       

recombination and mutation create next generation  

7. Return to 6  

IV. SIMULATION STUDIES  

      In this section we present the simulation results 

obtained when searching the general efficient frontier 

that resolves the problem formulated in equation 1 

and 2. The efficient frontier is computed using 

different MOEA like PAES, APAES and NSGA II.   

     All the computational experiments have been 

computed with a set of benchmark data available 

online and obtained from OR-Library being 

maintained by Prof. Beasley. Five data sets port1 to 

port5 represent the portfolio problem. Each data set 

corresponds to a different stock market of the world. 

The test data comprises of weekly prices from March 

1992 to September 1997 from the following indices: 

Hang Seng in Hong Kong, DAX 100 in Germany, 

FTSE 100 in UK, S&P 100 in USA and Nikkei in 

Japan. For each set of test data, the numbers of    

different assets are 31,85,89,98 and 225. In the paper 

we have used the first data set which corresponds to 

Hang Seng stock having 31 assets. The data can be 

found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib 

/portinfo.html. 

      The PAES and APAES use a population size of 

100 each and number of gene equals to number of 

assets, number of generations as 100 and mutation 

rate 0.05. The NSGA II has population size of 100, 

number of generations 100, crossover rate 0.8 and 

mutation rate 0.05. The number of real-coded 

variables is equal to number of assets and the 

selection strategy used is tournament selection.  

  

1. S metric 

     The S metric proposed in [7] indicates the extent 

of objective space dominated by a given 

nondominated set A.  If the S metric of a non 

dominated front 1f   is less than another front 2f  

then 1f  is better than 2f . It has been proposed by 

Zitzler [7]. 

2. ∆  metric 

     This metric called as spacing metric (∆ ) 

measures how evenly the points in the approximation 

set are distributed in the objective space. This 

formulation introduced by K. Deb [3] is given by 
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Where id  be the Euclidean distance between 

consecutive solutions in the obtained nondominated 

set of solutions. 
−

d  is the average of these distances. 

fd  and ld  are the Euclidean distance between the 

extreme solutions and the boundary solutions of the 

obtained non dominated set and N  is the number of 

solutions from nondominated set.  The   low value for 

∆  indicate a better diversity and hence better is the 

algorithm. 

3. C metric 

     Two sets of non dominated solutions are 

compared using C metric. The definition of C metric 

given in [7] for convergence of two sets   A and B is 

given by: 

( ) { }
B

baAaBb
BAC

f:|
,

∈∃∈
=                  (7) 

    
                                                   TABLE I 

THE RESULTS OBTAINED FOR S AND ∆ METRICS 

 

Algorithm     PAES     APAES    NSGA II 

Metric S 0.000404236 

 

0.0000057372 0.000000574 

Metric ∆  
0.892482853 0.7862596192 0.5967844252 

     

Table I shows the S and ∆  metrics obtained using all 

the three algorithms. It may be observed from the 

Table I that NSGA II performs better as its S and ∆  

metric values are less than those obtained by other 

two algorithms. 

 
TABLE II 

    THE RESULTS OBTAINED FOR C METRIC 

 

          PAES        APAES   NSGA II 

       PAES           —       0.0000          0.0000      

      APAES        0.95990          —       0.2653          

      NSGA II        0.96627    .07534           — 



     Table II demonstrates the results of C metric. A 

magnitude of 0.96627 on the third line, first column 

signifies that almost all solutions from final 

populations obtained by NSGA II dominate the 

solutions obtained by PAES. The value 0 on first row 

means that no solution from the nondominated 

population obtained by APAES and by NSGA II is 

dominated by solutions from final populations 

obtained by PAES. The performance of the two 

algorithms NSGA II and APAES are almost same but 

closely analyzing the value of C it can be concluded 

that performance of NSGA II is better than APAES. 

V.THE PARETO FRONTS OF DIFFERENT 

METHODS 

The Pareto fronts (between risk and return) obtained 

by three algorithms are depicted in Figs. 3(a)-(c) 
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                                   (c)  NSGA II method 

 
Fig. 3 Plots of Pareto fronts achieved by three methods 

VI.CONCLUSION 

       The paper makes a comparative study of three 

multi-objective approaches PAES, APAES and 

NSGA II. Experimental results reveal that the NSGA 

II algorithm outperforms other two MOEA 

algorithms in different experiments conducted. 

Future work include introduction of different 

operators for local search in the existing models 

which allow better exploration and exploitation of the 

search space when applied to portfolio optimization 

problem. 
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