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Abstract- Design of neuro-controller for complex dynamic 
systems is a big challenge faced by the researchers. In this 
paper we present a design of a robust neuro-controller for a 
dynamic system to make the system response fast with no 
overshoot. Here the control action decided by the controller 
completely depends on the value of the error at that point of 
time. The position feedback which controls the bandwidth of 
the system as well as the dynamic response is a function of the 
system error. For large error the position feedback is made 
large increasing the bandwidth of the system, and for small 
errors the position feedback value is small. Thus, during the 
dynamic response of the system the bandwidth of the system is 
controlled by the system error. Similarly, the velocity feedback 
which controls the damping in the system is kept very small for 
large errors, and large for small errors. Thus, in the proposed 
neuro-controller the position feedback ����� ��, and velocity 
feedback �	��� �� are made as a function of error which yields 
a very fast response with no or very little overshoot. 
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I.  INTRODUCTION  
   Neural networks (NNs) are now being used as a function 
to identify linear and nonlinear dynamic systems in 
engineering. The NNs have established their usefulness in 
such fields as function mapping, pattern recognition, and 
image processing. NNs have potential of developing 
attributes such as parallelism, adaptability, robustness, and 
the inherent ability to handle nonlinearity [1]. Recently, 
higher-order artificial neural networks have been studied in 
order to emulate and present a superior performance of the 
nonlinear functions of the biological neural networks [2-7]. 
The artificial higher-order neural units consist of a 
combination of synaptic operation and somatic operation 
which are fundamental processes referred to as static or 
feedforward structures [4, 8]. The mathematical represent-
ation of the neural units with mth

 
order synaptic operation 

can be written as 
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where ���� �� � ���� � � �  are the neural inputs and 
��������� �� � ���� � � �  are the synaptic weights. The 
output is given by the somatic operation, 

 ! � �"
# $ %& (2) 

where yN is an output scalar, and �[•] is a sigmoidal 
activation function [2]. If the error is reduced to an 
infinitesimally small value as the number of learning 
iterations increases, the learning scheme is said to be 
convergent [9]. However, biological neural systems are 
composed of recurrent connections and more sophisticated 
[10-12]. Thus, the limited nonlinear combination of a 
mathematical neural structure is not fully able to describe 
the complexity of the biological neuron. We expand the 
conventional mathematical synaptic operation with 
functionalized nonlinear combinations such as exponential, 
absolute and sinusoidal functions. The functionalized 
nonlinearity of a neural structure can be selected depending 
on the applications. In this paper, we apply the 
functionalized nonlinearity in the synaptic operation and 
present that a suitable nonlinearity of a novel neuro-
controller can make the control system response faster, more 
stable and robust. For a simulation purpose, a second-order 
system, satellite model, is applied.  

II. DESIGN OF A ROBUST NEURO- CONTROLLER 
   Now we present the design of a robust neuro-controller 
using some of the observations made in the above sections 
for a second order dynamic system.  

A. Dynamic Response of a second-order system: An 
example 

   Generally the dynamic behavior of a second-order system 
can be described in terms of two parameters, undamped 
natural frequency (�n) and damping ratio (�). Those are a 
function of position feedback (Kp) and mainly a function of 
velocity feedback (Kv) respectively as Fig. 1 and Eqn.(3). 
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where r is the reference input and the initial conditions are �
�&��� � � and �(��� � �. The transfer function of the system is 
derived as 2�3�

4�3� � 5�3� � -0
3( / -.3 / -0 (4) 

The characteristic equation of G(s) can be compared with 
that of the standard form of the second-order system. Thus, 
       3( / -.3 / -0 � 3( / 6�7�3 / 7�(     

7� � 8-9�  
 

� � :;
(8:<  

 

                                7= � 7�>� + �(  
(5) 

where �n is undamped natural frequency, � is damping 
ratio and �d is damped natural frequency [15]. The 
definition of the parameters is illustrated in Fig. 2.  
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Figure 1. A typical second-order system with velocity feedback (Kv) and 
position feedback (Kp) 
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Figure 2. Definition of the parameters 

The transient response of a practical control system often 
exhibits damped oscillations before reaching steady state. In 
specifying the transient-response characteristics of a control 
system to a unit-step input (Fig. 3), it is common to specify 
the following [13-15]: 

- Delay time, Td 
- Rise time, Tr 
- Peak time, Tp 
- Maximum overshoot, Mp 
- Settling time, Ts 

    Since the rise time (Tr) and settling time (Ts) are defined 
as 

?* � @ + A
7=

� @ + A
7�>� + �(

��BCD� 
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it is important to notice that Tr and Ts are dependent on 
undamped natural frequency (�n) and damping ratio (�) 
which decide the positions of poles of a system as shown in 
Fig. 2.  

Figure 3. A typical system response to a unit-step input 
 

 
Figure 4. System responses to a unit-step input with different pole 

positions which lead underdamped case and overdamped case. 
The initial conditions of the systems are zeros. The optimal 
system response can be considered with optimal pole positions. 

 

Figure 5. Errors from the different system responses 
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The system responses and the errors to a unit-step input with 
different pole positions are shown in Fig. 4 and Fig. 5. The 
transient response of the underdamped system yields larger 
Mp and slower Ts, but faster Tr. However, in the case of the 
overdamped system, the transient response presents no Mp, 
but slower Tr and Ts are acheived. Regarding the transient 
responses from the two systems, an optimal system response 
can be proposed considering �n and �. 
 

As observed in the previous section, for large errors the 
small � and large �n will yield a very fast response with a 
very small rise time, ?* � MNOPQ�����

RS>&N��
, and for small errors a 

large � and small �n will inhibit any overshoot. Thus, if we 
make -0�� 7�(� and -.�� 6�7� � as a function of system 
error T�U� � *�U� +  �U� then we can achieve a very fast 
dynamic response with no overshoot, small rise time and 
fast settling time. Thus, we propose the following design 
parameters. In this example, there are two design 
parameters: 

� Position feedback: Kp which controls the natural 
frequency of the system �n i.e. -0 � 7�(  

� Velocity feedback: Kv which controls the damping ratio 
� i.e. -. � 6�7�  

Thus, the controller design criteria are: 

1. When the system error is large, � should be very 
small with large �n 

2. When the system error is small, � should be large 
with small �n 

Thus we can make Kp and Kv as a function of error such that 
(-0 � 7�() change from a large value to a small value with 
decreasing error and (-. � 6�7� ) change from a very 
small value to a large value with decreasing error. 

One can develop many Kp and Kv functions which satisfy the 
above two criteria. One such proposed design for Kp and Kv 
is 

-0 � -0��� / VT(�  (7) 

-. � -.�WXY�+ZT(� (8) 

where � and � are some gain constants, Kp and Kv are 
equivalent to the time varying synaptic weights w1 and w2, 
and Kp0 and Kv0 are initial values of Kp and Kv. The other 
possible functions for -0�T� U� and -.�T� U�  are given in 
Table 1. 

III.  SIMULATION STUDIES  
    As discussed, an optimal transient response of a system 
yields faster settling time, faster rise time and smaller 
overshoot. In order to meet the proposed status, when the 
system starts, lower damping ratio is applied and makes the 
system response faster, but larger damping ratio is applied to 

make the system stable when the system response is near the 
target value.   

TABLE 1. VARIOUS FUNCTIONS  
FOR POSITION AND VELOCITY FEEDBACK GAINS 

����� �� �	��� ��
-0��� / V[T[� -.� �

� / Z[T[  

-0��� / VT(� -.� �
� / ZT(  

-0��� / VT(� -.�WXY�+ZT(� 
Note: Many other functions can be derived for Kp(e,t) and Kv(e,t) for example taking the hyperbolic 
tangent (tanh(•)) and cosine (cos(•)) functions. 

Since the natural frequency determines the rise time and 
settling time as well as expressed in Eqn.(6), we design a 
neuro-controller considering both damping ratio and natural 
frequency. A satellite model is used as an example for the 
simulation study. 

A. Satellite positioning control: An example 
    Satellite usually needs a decent control to adjust its 
antenna to the station on the earth by rotation as shown in 
Fig. 6. The rotation angle � of the satellite is determined by 
the force of gas jet on the satellite. The motion of the 
satellite is derived by basic Newton’s law as 

64\�U� � ]Â�U�,  (9) 

and the rotation angle � of the satellite. Thus, the transfer 
function of the satellite system is  

                                A�3� � (_`�a�
ba�   (10) 

From Eqn.(10), it is clear that the transfer function of the 
satellite has two integrators and two states x1 and x2 which 
represent position and velocity of the satellite. A controller 
is implemented to control the satellite. In order to control the 
satellite stable, for the zero steady state error, the closed 
loop poles need to be positioned on the real axis, which 
yields an overdamped system. Thus, we allocate two poles 
at the position of -1 and -3, which makes the value of 
velocity feedback (Kv) and position feedback (Kp) 4 and 3 
respectively (Fig. 1). The system response and error curves 
with the given value of Kv and Kp is shown in Fig. 7. 

�

 

Figure  6. Schematic satellite positioning by jetting gas to rotate 

The result explains that this overdamped system is very 
stable and does not generate overshoot (Mp). The rise time 
(Tr) of the system is 2.67 seconds. However, the high 
damping ratio (�) renders the system sluggish to reach the 
settling time (Ts). In order to develop the system response as 
the way that the response yields faster Tr and lower Mp, we 
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design and implement a neuro-controller in the satellite 
model. Since the overdamped system is very stable, the 
object of the neuro-controller is to adapt the stable system 
with faster Tr as the design criteria. That is to say, the 
system is underdamped at the starting point and overdamped 
when the system is near the target. 

B. Nonlinear neuro-controller 
    An optimal damping would make a system response very 
quickly with minimal overshooting. The nonlinearity of the 
controller can generate an optimal damping. A neuro- 
controller can be applied to meet the nonlinearity of a 
desired controller, which refers the cross-relation of position 
and velocity. 

Figure 7. The system output and error of the satellite position control with 
overdamping to a unit-step input. Mp = 0 and Tr = 2.67 (sec).  

A proposed neuro-controller for the satellite is shown in Fig. 
8. The velocity feedback (Kv) and position feedback (Kp) are 
adapted by the system error. The synaptic operation of a 
neural structure is derived with given two inputs, position 
(x1) and velocity (x2), and generates the control signal u as  

) � * + ,-.�( / -0�&1 (11) 

where r is the reference input. Thus, Kp and Kv are derived 
with respect to the error as,  

-0 � -0��� / VT(� (12) 

                          -. � -.�WXY�+ZT(� (13) 

                            T � * +   (14) 

where Kp0 and Kv0 are the initial values of Kp and Kv, � and � 
are the gain constants, Exp(�) is the exponential function, e 
is the system error, and y is the system output. For this 
satellite positioning control, Kp is proportional to the 
undamped natural frequency (�n), and Kv is proportional to 
damping ratio (�) from Eqn.(5). By the proposed criteria, �n 
should decrease and � should increase as the error decreases.  

    Now, we design the neuro-controller with the selected 
functions and the proposed criteria. Considering pole 
positions, we arrange the initial poles at 0.1±j2 and final 
poles at -1 and -3 on the real-imaginary plane. The initial 

poles of the closed-loop system lead fast Tr. However, if the 
position of the poles is firm, the system becomes unstable.  

S
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Figure 8. Robust neuro-controller for the satellite positioning: 
-0�T� U� � -0�c&�K�  and -.�T� U� � -.�c(�K� 

Thus, the poles move to the desired position as the error 
becomes zero. Regarding the error of the system which 
responses to a unit-step input, e = 1 at t = 0 and e = 0 at t = 
� as shown in Fig. 7. From the initial and final positions of 
the poles and the value of the error, the values of Kp0, Kv0, � 
and � are calculated as 4, 3, 0.3367 and 2.9957 respectively. 
From Eqns.(5), (12), (13) and (14), the desired value of �n 
and � at time t are derived as 

                 7��U� � 8-0��� / V�*�U� +  �U��(� (15) 

                    ��U� � :;defg,Nh�i�j�Nk�j���1
(>:<d�&lm�i�j�Nk�j����

 (16) 

The system response and the error curves are shown in Fig. 
9. The results compare the response curves of the previous 
result from overdamped system and neuro-control system.  

Figure 9. The system response curves of two systems. The neuro-
control system reaches to the target faster and stable with 
Mp = 0 and Tr1 = 1.26 (sec). The initial poles of the 
closed-loop neuro-control system are positioned at 0.1±j2 
for fast response and moved to -1 and -3 for settling down 
at the end as shown in pole positions in small windows. Tr2 
= 2.67(sec) for the overdamped system. 

As shown, about 53% of rise time is compensated without 
overshoot with the robust neuro-controller. In Fig. 10, the 
dynamic response curves of the system with the neuro-
controller are plotted. At the beginning of the response, � is 
small and �n is high, which makes very small Tr with large 
system error. However, as the system reaches near the 
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target, � becomes high and �n is small, which drives the 
system stable with small error. Further, Figure 11 presents 
the locus of the poles with respect to the error which is 
named as error based dynamic pole locus. It is clear from 
the figures that as the error decreases, the poles are 
approaching faster to their final position without yielding 
small or no overshoot. 

 
(a) position (x1(t)) (d) natural frequency (�n(t)) 

 
(b) velocity (x2(t)) (e) dampint ratio (�(t)) 

 
(c) error (e(t)) (f) �n  versus � 

Figure  10. Dynamic responses of the satellite system 
 

�

(a)  Error-based dynamic pole locus with respect to the system error. As the 
error decreases, the poles moves to the final positions. 

 

(b) The poles of the system moves from from 0.1±j2 to -1 and -3 

Figure 11. Pole placement with respect to the system error. The arrows 
indicates the decreasing error. The initial poles are positioned at 
0.1±j2 and settles at -1 and -3 at the end. 

IV. CONCLUSION 
In this paper we have suggested an error based neuro-
controller for controlling the dynamic response of a complex 
dynamic system. The design of the neuro-controller is 
conceptually error based and using a satellite control 
problem. It is shown that the response is very fast yielding a 
very small rise time with no overshoot. Further work is 
under way to extend this neuro-controller design philosophy 
for higher order complex dynamic systems.    
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