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Abstract 

 

Mixed mode (I and II) overloads are often encountered in an engineering structure due to 

either alteration of the loading direction or the presence of randomly oriented defects. 

Prediction of fatigue life in these cases is more complex than that of mode-I overloads. 

The objective of this study is to explore the use of an artificial neural network (ANN) 

model for the prediction of fatigue crack growth rate under interspersed mixed mode (I 

and II) overload. The crack growth rates as predicted by the ANN method on two 

aluminum alloys, 7020 T7 and 2024 T3, have been compared with the experimental data 

and an Exponential Model. It is observed that the predicted results are in good agreement 

and facilitate determination of residual fatigue life. 
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Nomenclature 

 

a   crack length measured from edge of the specimen  (mm) 

ai    crack length corresponding to the ‘i
th

’ (initial) step (mm) 

aj   crack length corresponding to the ‘j
th

’ step (mm) 

ad retarded crack length (mm) 

A

da    retarded (ANN) crack length (mm) 

EN

da  retarded (exponential) crack length (mm) 

EX

da  retarded (experimental) crack length (mm) 

A′ , B′ ,C′ , D′    curve fitting constants in the Exponential Model 

‘cgr’ crack growth rate 

da/dN crack growth rate (mm/cycle) 

E modulus of elasticity (MPa) 

Err sum-squared error 

f(.) activation function 

K stress intensity factor ( mMPa ) 

KI mode-I stress intensity factor ( mMPa ) 

KII   mode-II stress intensity factor ( mMPa ) 

KC plane stress fracture toughness ( mMPa ) 

∆K   stress intensity factor range ( mMPa ) 

III

II

KK

K

+
  mode-mixity 

l  dimensionless factor in the ‘Exponential Model’ formulation 

‘lay’  layer number 

m   specific growth rate 

‘MM’ mode-mixity 

‘msif’   maximum stress intensity factor 

mij specific growth rate in the interval i-j 

N  number of cycles or fatigue life  

Ni   number of cycles corresponding to the ‘i
th

’ step  
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Nj   number of cycles corresponding to the ‘j
th

’ step  

Nf final number of cycles 

dN  number of delay cycle 

A

dN    number of delay cycle (ANN) 

EN

dN    number of delay cycle (exponential) 

EX

dN    number of delay cycle (experimental) 

A

fN    final number of cycles (ANN) 

EN

fN    final number of cycles (exponential) 

EX

fN  final number of cycles (experimental) 

r   label for r
th

 neuron in hidden layer ‘lay-1’ 

S label for s
th

 neuron in the hidden layer ‘lay’ 

‘sifr’   stress intensity factor range 

t   iteration number 

w   plate width (mm) 

{ }lay

srW    weight of the connection from neuron r in layer ‘lay-1’ to neuron  

‘s’ in layer ‘lay’ 

y1, y2, y3  inputs to the ANN 

X1..X4, Y1..Y4  

and Z1..Z4 curve fitting constants in the ‘Exponential Model’ 

ν  Poison’s ratio 

α    momentum coefficient  

1α  ratio of mode-I and mode-II plane stress fracture toughness 

β   loading angle 

θactual   neural network output 

θdesired   desired output 

η    learning rate 

{ }lay

sδ    local error gradient 

σys   yield point stress (MPa) 
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1. Introduction 

 

During service, structures and components are generally subjected to cyclic 

loading, where the mode of loading may vary from pure mode-I, II and III to mixed-

mode. Under these situations, load amplitudes may change either occasionally or 

permanently (for a particular period) leading to mixed mode (I and II) overload or mixed 

mode block loading. Similar to single mode-I overload, mixed mode (I and II) spike 

overload also retards the crack growth rate and consequently affects the fatigue life. The 

observed retardation effect decreases with an increasing amount of mode-II component of 

the overload [1, 2].  

The problem of mixed mode (I and II) fatigue has been extensively investigated 

since the pioneer contribution of Iida and Kobayashi [3]. Several investigators [4-8] have 

proposed various models of mixed mode (I and II) fatigue crack growth. A few research 

works [1, 2, 9] have been done to analyze the mixed mode (I and II) overload fatigue. 

However, from life prediction point of view, no model is available, to the knowledge of 

the authors, so far as mixed-mode overloads are concerned. Earlier a preliminary attempt 

has been taken by the authors [10] to evaluate various retardation parameters under 

mixed mode (I and II) spike overload using an Exponential Model. Later some 

improvements [11] have been suggested to extend it to predict the end of life under these 

situations.  

In recent years, artificial neural network (ANN) approach has emerged as a new 

branch of soft-computing used in various fields of science including fatigue. It is an 

information processing system which learns by examples without requiring the theory 

behind a phenomenon. It is successfully used where the relationships of inputs and 

outputs are non-linear. A brief literature survey regarding the use of ANN in the field of 

fatigue has been done by Jia and Davalos [12] in their research paper. They used ANN to 

predict fatigue crack growth rate that would facilitate the development of design 

guidelines for hybrid material bonded interfaces. Although, artificial neural network finds 

its application in the field of fatigue, but automatic prediction of fatigue life under 

interspersed mixed mode (I and II) overload by using the above method is lacking. In the 

present work ANN has been used to evaluate various mixed mode (I and II) overload 

induced retardation parameters as well as residual fatigue life from predicted da/dN–∆K 
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curve of post-overload period. The results have been compared with those obtained from 

the extended exponential model earlier proposed by the [11]. It has been observed that 

the predicted ANN results are in good agreement with the experimental data as well as 

the above model results. 

 

2. Artificial Neural Network 

2.1 A brief introduction to the approach 

Human brain is made up of hundreds of millions brain neurons densely 

interconnected by synapses. Dendrites receive information and activate cells to transfer 

information to the other neurons by axons. ANNs are computational models similar to 

human brain intelligence system, which simulate the function of biological neural 

network composed of neurons. Each neuron receives different input signals which in turn 

sums all the input signals (with suitable weights) and, if this sum is greater than a chosen 

threshold, it produces one output signal. 

More precisely, the system is composed of a layer of input neurons, a layer of 

output neurons and one or more layers of hidden neurons. Neurons in each layer are 

interconnected to subsequent layer neurons with each interconnection having associated 

connection strength (or weight). Various non-linear activation functions, such as 

sigmoidal, tanh or radial (Gaussian), are used to model the neuron activity. There are 

three types of training, the supervised, unsupervised and reinforcement. The input-output 

sets are divided into two groups in case of supervised training. The first group is used for 

the training phase and the second group for the validation phase. The network is trained 

by optimizing corresponding weights in such a way that the significant outputs can be 

obtained for the inputs not belonging to the training set. The unsupervised training is 

based on organizing the structure so that similar stimuli activate similar neurons where 

there is no pre-defined output and the network finds differences and affinities between 

the inputs. In reinforcement learning, one form of supervised training attempts to learn 

input-output vectors by trial and error through maximizing a performance function 

(named reinforcement signal). 

Some ANNs are classified as feed forward while others are recurrent depending 

on how data are processed through the network. Among the various classifications, 
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depending on the structure and training phase, multi-layer perceptron (MLP) is the most 

popular and widespread ANN architecture for engineering problems. They are generally 

used with feed-forward neural networks trained with the standard back propagation 

algorithm. MLPs are supervised networks with feed-forward type, in which each neuron 

is joined only to the neuron of successive layer and that there are no connections of the 

feed- back type. 

In the present work a multi-layer perceptron with back-propagation neural 

controller has been developed for the prediction of fatigue crack growth in case of 

constant amplitude loading with interspersed mixed mode (I and II) overload. The neural 

network has been written in the C
++ 

programming language and all the training tests have 

been performed on a personal computer. It has got three input parameters and one output 

parameter. The inputs to the neural network controller are as follows:  

Stress intensity factor range = “sifr”; Maximum stress intensity factor = “msif”; 

Mode-mixity = “mm” 

The output from the neural network is as follows: 

Crack growth rate = “cgr”  

 

2.2 Neural controller mechanism for crack growth rate prediction 

The neural network used is a nine layer perceptron [13]. The chosen number of 

layers has been selected empirically to facilitate training. The neurons associated with the 

input and output layers are three and one respectively. The neurons associated in the 

seven hidden layers are twelve, twenty four, hundred, thirty five, and eight respectively. 

The neurons are taken in order to give the neural network a diamond shape (Fig. 1). 

These numbers of hidden neurons have been found empirically. During training and 

during validation, the input patterns fed to the neural network comprise the following 

components: 

{ }1

1y  = stress intensity factor range (1a) 

{ }1

2y  = maximum stress intensity factor      (1b) 

{ }1

3y = mode-mixity  (1c) 
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These input values are distributed to the hidden neurons which generate outputs given by 

(Haykin, 1999): 

{ } { }( )lay

s

lay

s f vy =           (2) 

where, { } { } { }∑ −=
r

yWv 1lay

r

lay

sr

lay

s .  (3) 

‘lay’ = layer number (2 to 8) 

s = label for s
th

 neuron in the hidden layer ‘lay’ 

r = label for r
th

 neuron in hidden layer ‘lay-1’ 

{ }lay

srW = weight of the connection from neuron r in layer ‘lay-1’ to neuron s in layer ‘lay’ 

f (.) = activation function, chosen in this work as the hyperbolic tangent function: 

xx

xx

)(f
−

−

+

−
=

ee

ee
x  (4) 

During training, the network output θactual, may differ from the desired output 

θdesired as specified in the training pattern presented to the network. A measure of the 

performance of the network is the instantaneous sum-squared difference between θdesired 

and θactual for the set of presented training patterns:  

( )2

actualdesiredrr
2

1
∑ −=

patterns
training
all

E θθ  (5) 

where θactual represents crack growth rate (“cgr”) 

The error back-propagation method is employed to obtain the network. This 

method requires the computation of local error gradients in order to determine 

appropriate weight corrections to reduce ‘Err’. For the output layer, the error gradient { }9δ

is: 

{ } ( )( )actualdesired

9

1

'9 f θθδ −= V         (6) 

The local gradient for neurons in hidden layer {lay} is given by: 

{ } { }( ) { } { }







= ∑ ++

k

WV
1lay

ks

1lay

k

lay

s

'lay

s f δδ  (7) 

The synaptic weights are updated according to the following expressions: 

( ) ( ) ( )1∆1 srsrsr ++=+ tWtWtW        (8) 

and ( ) ( ) { } { }1lay

r

lay

ssrsr ∆1∆
−+=+ ytWtW ηδα  (9) 
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where, 

α = momentum coefficient (chosen empirically as 0.2 in this work) 

η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation of a training pattern and 

correction of the weights. 

The final output from the neural network is: 

{ }( )9

1actual f V=θ  (10) 

where, { } { } { }∑=
r

yWV 8

r

9

1r

9

1         (11) 

 

3. Experimental database 

 The experimental database employed in the present investigation has been taken 

exclusively from the author’s previous work [11]. It consists of six sets of fatigue tests at 

different overloading angles, β (=0
o
, 18

o
, 36

o
, 54

o
, 72

o
 and 90

o
)
 
at overload ratio of 2.5.  

The interspersed mixed mode (I and II) overload fatigue tests were conducted using 7020 

T7 and 2024 T3 Al-alloys with single-edge notched tension specimens on Instron-8502 

machine. The test specimens were fatigue pre-cracked under mode-I loading to an a/w 

ratio of 0.3 and were subsequently subjected to constant load test (i.e. progressive 

increase in ∆K with crack extension) maintaining a load ratio of 0.1 at a frequency of 6 

Hz. Then the fatigue crack was allowed to grow up to an a/w ratio of 0.4 and then 

subjected to single overload spike at a loading rate of 8 kN/min followed by constant load 

fatigue test in mode I. For more details about the tests, material properties and loading 

device the author’s previous work [11] can be consulted. 

 

4. Application design and results  

4.1 Development of ANN model 

While developing an ANN model, proper selection of input and output parameters 

and also the structure of the network are very much essential in achieving better results. It 

is considered that the most suitable combinations of input and output sets are those which 

would give the least normalized mean square error (NMSE). It has now been proved that 

fatigue crack growth rate is governed not only by single crack driving force ∆K, but, 
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according to Unified Approach, by the simultaneous action of both ∆K and Kmax [14-17]. 

In case of interspersed mixed-mode (I and II) overload, the angle of overloading also 

influences the retardation effects as verified in various literatures [1, 2, 11]. Therefore, 

stress intensity factor range (∆K), maximum stress intensity factor (Kmax), and mode-

mixity 








+ III

II

KK

K
 have been considered as the best sets of input parameters for the 

present investigation. As regards the output, crack growth rate 








N

a

d

d
 has been chosen as 

the best output parameter to facilitate prediction of life as well as determination of 

various retardation parameters.  

In order to design a suitable ANN architecture, normalization of input and output 

parameters are essential. Certain classical normalization, where the range is scaled 

between 0 and 1, may not be applicable in every ANN model. To make the input 

amenable for successful learning to minimize the overall mean square error, the two input 

parameters ∆K and Kmax have been normalized between 1 and 4, while the other one, 

mode-mixity 








+ III

II

KK

K
has been normalized between 0 and 1. Similarly the output 










N

a

d

d
 has been normalized between 0 and 3 for network training and testing. The inputs 

and outputs of the training sets (TS) have been constituted from 503×  experimental 

values of ∆K, Kmax and 








N

a

d

d
data for each of the overloading angles 0°, 18°, 36°, 72° 

and 90° with mode-mixity of 0, 0.245, 0.421, 0.755 and 1.0 in case of both 7020 T7 and 

2024 T3 Al-alloys.  

 

4.2 Application of the model 

The multi-layer perceptron (MLP) neural network architecture has been applied to 

simulate the crack growth rate of an unknown set of overload angle, 54
o
 (mode-mixity = 

0.579) as validation set (VS) by constructing a training set (TS) with five known sets of 

overload angles (β = 0°, 18°, 36°, 72°, 90° and mode-mixity = 0, 0.245, 0.421, 0.755 and 

1). The performance of the trained ANN model has been presented in Table 1. Figures 2 
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and 3 illustrate the mean square error (MSE) curves during the training of the model. 

After training, the three input parameters i.e. stress intensity factor range (∆K), maximum 

stress intensity factor (Kmax) and mode-mixity (MM) for the suppressed overload angle 

54° have been fed to the trained ANN model in order to predict the corresponding crack 

growth rate 








dN

da
. The predicted crack growth rate results of the tested specimens have 

been presented in Figs. 4 and 5 respectively along with experimental data for comparison. 

It is observed that the simulated da/dN–∆K points follow the experimental ones quite 

well. The number of cycles has been calculated from the simulated 








N

a

d

d
values by 

taking the experimental ‘a’ and ‘N’ values of the overload point as the initial values and 

assuming an incremental crack length of 0.05mm in steps in excel sheet as per following 

equation:  

i

ii

i N

dN
da

aa
N +

−
= +

+
1

1          (12) 

The predicted a ~ N values of the ANN model have been compared with the experimental 

data in Figs. 6 and 7 respectively for both the materials. The a–da/dN and N–da/dN 

curves have been given in Figs. 8 to 11 in order to facilitate the calculation of various 

retardation parameters (ad, Nd) as presented in Table-2. 

 

4.3 Comparison with ‘exponential model’ 

The predicted ANN results have been compared quantitatively in Table 2 with 

that of author’s previously proposed “Exponential Model” [11]. For the purpose some 

silent features of the model need to be discussed here. The fundamental equations of the 

model were: 

)(

ij
ijij NNm

eaa
−

=          (13) 

( )ij

i

j

ij

ln

NN

a

a

m
−










=          (14) 

where, ai and aj = crack length in i
th

 step and j
th

 step in ‘mm’ respectively, 
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Ni and Nj = No. of cycles in i
th

 step and j
th

 step respectively, 

mij= specific growth rate in the interval i-j, 

i = No. of experimental steps, 

and j = i+1    

The exponent ‘m’, called specific growth rate, has been correlated with a 

parameter ‘l’ that depends on various material properties (KC, E, σys) and also two crack 

driving parameters (∆K, Kmax) by the following equation: 

''2'3'
DlClBlAm +++=          (15) 

where,
4

1

ys

C

max

C

∆
































=

EK

K

K

K
l

σ
 

and 
'''' ,,, DCBA are curve-fitting constants. 

 The model has been applied with a fixed overload ratio (Rol = 2.5) at different 

overload angles (β = 0°, 18°, 36°, 54°, 72° and 90°). The values of above constants differ 

since the amount of retardation varies according to the overload angles. Therefore, each 

constant of different overload angles (except 54° angle) are correlated with mode-mixity, 










+ III

II

KK

K
, by a 2

nd 
degree polynomial curve fit so as to give the following sets of 

equations: 

1

III

II
1

2

III

II
1 Z

KK

K
Y

KK

K
XA +









+
+









+
=′  (16) 

2

III

II
2

2

III

II
2 Z

KK

K
Y

KK

K
XB +









+
+









+
=′       (17) 

3

III

II
3

2

III

II
3 Z

KK

K
Y

KK

K
XC +









+
+









+
=′  (18) 

4

III

II
4

2

III

II
4 Z

KK

K
Y

KK

K
XD +









+
+









+
=′  (19) 

where, X1…..X4, Y1…….Y4 and Z1….Z4  are another set of curve fitting constants relating 

'A , 'B , '
C and 'D with mode-mixity 









+ III

II

KK

K
. 
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Putting the values of various constants in equation (15) the predicted ‘m’ value has been 

determined for overload angle 54°. The number of cycles (fatigue life) has been 

calculated case cycle-by-cycle basis as follows; 

i

ij

i

j

j

ln

N
m

a

a

N +









=     (20) 

The various predicted model results have been presented graphically in Figs. 12 to 19. 

 

5. Analysis of results  

 The performances of different models were analyzed by comparing the prediction 

results with the experimental findings by the following criteria: 

• Percentage deviation of predicted data from the experimental data i.e. 

100
result alExperiment

result alExperimentresult Predicted
Dev0

0 ×
−

=  

• Prediction ratio which is defined as the ratio of actual result (i.e. experimental) to 

predicted result i.e. 

Prediction ratio, 
result Predicted

result Actual
Pr =  

• Error bands i.e. the scatter of the predicted life in either side of the experimental 

life within certain error limits.  

Table 3 presents various model results as per the above evaluation criteria. From the 

above table it is observed that the percentage deviations of different retardation 

parameters are within ± 7.0% (maximum). The post overload fatigue crack propagation 

lives are within –0.2% to +1.5% whereas, the prediction ratio is about 1.0. From the 

above results it can be concluded that the performance of ANN model is quite 

satisfactorily. As far as relative performance is concerned, the exponential model gives 

better results in comparison to ANN model. Analyzing the error band scatter (Figs. 20 

and 21) it is observed that the results of Al 7020 T7 are within ± 0.05% error band while, 

it is less i.e. ± 0.025% for Al 2024 T3. 

 

6. Discussion and Conclusion 
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Prediction of residual fatigue life including the retardation parameters (ad and Nd) 

under interspersed mixed-mode (I and II) overloads by the proposed ANN model 

provided an excellent matching with the experimental data and also with the exponential 

model proposed earlier by the authors. It is observed that the ANN result is seriously 

affected by the selection of input and output parameters. Selecting single crack driving 

force (∆K), instead of two crack driving forces (∆K and Kmax) and mode-mixity (MM) as 

inputs, resulted in poor prediction of crack growth rate (da/dN). This supports the 

principle of Unified Approach which has been taken into consideration in formulating the 

Exponential Model. Inclusion of the suppressed data set for overload angle 54° (which 

has been predicted from the model) may further improve the accuracy of the ANN model, 

which can be used to predict any intermediate angle within the range 0° 
to 90°. However, 

one of the shortcomings of the present ANN model is that the life is calculated from the 

predicted crack growth rate results, whereas the direct prediction of fatigue life is 

possible in case of “Exponential Model”. 
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Table 1 – Performance of ANN model during training 

Material Momentum 

Coefficient 

Learning 

rate 

Hidden 

neurons 

MSE Training 

epochs 

Computational 

Time (Min.) 

7020 T7 0.2 0.35 179 610688.1 −×  510419.7 ×  765 

2024 T3 0.2 0.35 179 610798.1 −×  510789.7 ×  686 
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Table 2 – Comparison of ANN and exponential model results with experimental data 

Test 

sample 

A

da  

mm 

EN

da  

mm 

EX

da  

mm 

A

dN  

K cy.
 

EN

dN  

K cy. 

EX

dN  

K cy. 

A

fN  

K cy. 

EN

fN  

K cy. 

EX

fN  

K cy. 

7020-T7 1.90

0 

1.97

8 

1.99

4 

22.5

47 

21.4

9 

21.7

50 

75.493 74.6

0 

74.778 

2024-T3 2.14

1 

2.27

4 

2.30

0 

20.7

91 

19.5

64 

20.0

19 

120.15

2 

118.

22 

118.475 

 

 

 

Table 3 – Various model results under interspersed mode-I overload 

Test 

sample 

% 

Dev 

EN

da  

% 

Dev 

A

da  

%  

Dev 

EN

dN  

% 

Dev 

A

dN  

% Dev 

(
EN

fN ) 

% Dev 

( A

fN ) 

Prediction 

ratio of 

exponential 

model 

     ( EN

rP ) 

Prediction 

ratio of 

ANN 

( A

rP ) 

7020 T7 –0.80 –4.71 –1.20 +3.66 –0.241 +0.956 1.0024 0.991 

2024 T3 –1.13 –6.91 –2.27 +3.86 –0.219 +1.415 1.0021 0.986 
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                                  Fig. 1 - ANN architecture    
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Fig. 2 – MSE curve obtained during training of ANN  

 for Al 7020 T7 
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Fig. 4 - Comparison of predicted (ANN) and experimental crack growth rate 

                 with stress intensity factor range for overload angle of 54
o
(Al 7020 T7)            
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Fig. 3 – MSE curve obtained during training of ANN  

 for Al 2024 T3 
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Fig. 5 - Comparison of predicted (ANN) and experimental crack growth rate 

with stress intensity factor range for overload angle of 54
o
 (Al 2024 T3) 

 

 

Fig. 6 - Comparison of predicted ANN result (54
o
) of crack length 

with number of cycles (Al 7020 T7) 
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Fig. 7 - Comparison of predicted ANN result (54
o
) of crack length 

with number of cycles (Al 2024 T3) 

 

 

 

Fig. 8 - Comparison of predicted ANN result (54
o
) of crack growth rate 

with crack length (Al 7020 T7) 
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Fig. 9 - Comparison of predicted ANN result (54
o
) of crack 

   growth rate with crack length (Al 2024 T3) 

 

 

Fig. 10 - Comparison of predicted ANN result (54
o
) of crack 

    growth rate with number of cycles (Al 7020 T7) 
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Fig. 11 - Comparison of predicted ANN result (54
o
) of crack 

    growth rate with number of cycles (Al 2024 T3) 

 

 

Fig. 12 - Comparison of predicted (ANN), ‘Exponential Model’ and experimental 

   results (54
o
) of crack length with number of cycles (Al 7020 T7) 
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Fig. 13 - Comparison of predicted (ANN), ‘Exponential Model’ and experimental 

results (54
o
) of crack length with number of cycles (Al 2024 T3) 

 

 

Fig. 14 - Comparison of predicted ANN and ‘Exponential Model’ results (54
o
) 

of crack growth rate with stress intensity factor range (Al 7020 T7)             
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Fig. 15 - Comparison of predicted ANN and ‘Exponential Model’ results (54
o
) 

of crack growth rate with stress intensity factor range (Al 2024 T3) 

 

 

Fig. 16 - Comparison of predicted (ANN), Exponential and experimental 

        crack growth rate with crack length for 54
o
 (Al 7020 T7) 
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Fig. 17 - Comparison of predicted (ANN), Exponential and experimental 

    crack growth rate with crack length for 54
o
 (Al 2024 T3) 

 

 

Fig. 18 - Comparison of predicted (ANN), Exponential and experimental 

    crack growth rate with number of cycle for 54
o
 (Al 7020 T7) 
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Fig. 19 - Comparison of predicted (ANN), Exponential and experimental 

  crack growth rate with number of cycle for 54
o
 (Al 2024 T3) 

 

 

Fig. 20 – Error band scatter of predicted lives of 7020 T7 under mixed mode overload 
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Fig. 21 – Error band scatter of predicted lives of 2024 T3 under mixed mode overload 
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