
 

 

 

 
 

Efficient Design of Pulse Compression Codes Using Multiobjective Genetic 
Algorithm 

Ajit Kumar Sahoo, Ganapati Panda and Pyari Mohan Pradhan 
Department of Electronics and Communication 

National Institute of Technology, Rourkela, Orissa, India 
Email: ajitsahoo1@gmail.com, ganapati.panda@gmail.com, pyarimohan.pradhan@gmail.com 

 

   



Efficient Design of Pulse Compression Codes Using Multiobjective Genetic
Algorithm

Ajit Kumar Sahoo, Ganapati Panda and Pyari Mohan Pradhan
Department of Electronics and Communication

National Institute of Technology, Rourkela, Orissa, India
Email: ajitsahoo1@gmail.com, ganapati.panda@gmail.com, pyarimohan.pradhan@gmail.com

Abstract

Binary sequences having good aperiodic autocorrela-
tion functions (ACFs) with low range sidelobes are re-
quired for many communication applications. However, few
such good binary sequences are available having large
sequence length. In this paper nondominated sorting genetic
algorithm-II (NSGA-II) is used to generate biphase pulse
compression codes from length 49 to 100. Pulse compression
technique avoids the transmission of a signal having small
pulse width and high peak power for better range resolution.
The efficiency of these codes depends upon the energy con-
tent in the range sidelobes of their autocorrelation functions.
Peak sidelobe level (PSL) and integrated side lobe level (ISL)
are the two performance measures for pulse compression
codes. In this paper the multi objective problem is designed
by taking PSL and ISL as the objective functions.

1. Introduction

In a pulse radar system the transmitted pulse width
should be as long as possible to increase the sensitivity
of the system and as small as possible at the receiver
for better range resolution. Range resolution is the ability
of the radar receiver to discriminate nearby targets. The
performance of range resolution radar would be optimal, if
the coded waveform has impulsive autocorrelation. In pulse
compression technique a long coded pulse is transmitted
and the received echo is processed to obtain a relatively
narrow pulse. Thus increased detection capability of a long
pulse radar system is achieved while retaining the range
resolution capability of a narrow pulse system. The range
resolution is determined by bandwidth of the signal. Wide
bandwidth is necessary for good range resolution. The signal
bandwidth is obtained by modulating phase or frequency
of the signal, while maintaining constant pulse amplitude.
Mostly biphase pulse compression is used in radar system
in which the phase of the transmitted signal is 0 degree
relative to a local reference for a ’+1’ in the binary code and
180 degree for a’-1’. Phase coding can be used to reduce
radio frequency interference between adjacent radar and
make the waveform more robust to interference. Phase coded

(PC) waveforms support better range-resolution compared
with linear frequency modulated (LFM) pulses because the
windowing functions used with LFM pulses to lower time
sidelobes cause a broadening in the mainlobe response and
a deterioration in range resolution, which is not present
with phase coding. But the autocorrelation of phase coded
waveforms contain range sidelobes, which have a negative
influence on the detection performance of radar. These side-
lobe can mask useful information and may give undesired
gain to the signal from the unwanted target. A desirable
property of the compressed pulse is that it should have
low sidelobes in order to prevent a weak target from being
masked in the time sidelobes of a nearby stronger target.
The lower the sidelobes, relative to the main lobe peak,
the better the main peak can be distinguished and, therefore
the better is the corresponding code. The compressed pulse
should not significantly degraded when the return signal
has been doppler shifted due to target motion. Most of the
modern radars incorporate pulse compression waveforms to
avoid transmission of a pulse having a large peak power.
The selection of a pulse compression codes depends upon
the application and the environmental conditions. If the
application is radar designed for a scenario dominated by
distributed clutter then integrated side lobe level (ISL) is
very important. On the other hand if the application requires
detection of targets in the presence of large discrete clutter
then the peak side lobe level (PSL) is more important. If
the desired ISL or PSL performance is not achieved with a
matched filter, some signal to noise ratio (SNR) gain may
be sacrificed and a mismatch filter may be used to achieve
the desired side lobe level.

Sequences having low off-peak signal value at the output
of the matched filter have found extensive applications in
radar and communication systems. Binary pulse compres-
sion codes such as the Barker code [1] or maximal-length
sequences [2] are extensively used in many radar systems.
The digital matched filter for the binary code is much less
complex than the polyphase code, and the clutter rejection
performance of the binary code is fair while that of the
chirp method is poor. Barker sequences are the only known
binary sequences with the lowest PSL of unity. The longest
available barker sequence is of length 13.Many practical



applications require longer codes to achieve higher signal
to noise ratio. By exhaustive computer search program,
Lindner [3] found all binary sequences up to length 40
with minimum PSL. Cohenet al. [4] extended those results
to length 48. Using a neural network approach, Huet

al. [5] obtained useful binary sequences for lengths up to
100.Kerdocket al. [6] found the maximum length of a code
for a given peak sidelobe level. Boehmer[7] has developed
an analytical technique for generating good binary pulse
compression codes. Rao and Reddy [8] has obtained larger
length binary sequences with minimum sidelobes in their
aperiodic autocorrelation pattern by cyclically shiftingthe
Legender sequences.Levanon [9] used mismatch processing
to optimize integrated or peak sidelobe levels of long binary
signals. Baden and Cohen [10] has explained a method for
generating a filter that minimizes the energy in the side lobes
after multiplying the sidelobes by a given weighing function.
Therefore the pulse compression problem of radar may be
viewed as a multiobjective problem in the sense that the
PSL and ISL need simultaneous minimization. This burning
issue has been studied in [5] using artificial neural network
(ANN) technique but not as a multiobjective problem.

The organization of the paper is as follows. In section
2, the basis of generating new aperiodic codes is outlined
as a multiobjective optimization problem in which the PSL
and ISL are simultaneously optimized. The multiobjective
tool used as to optimize these two objective functions is
discussed in section3. The new sequences generated by
the proposed method are obtained by NSGA-II through
simulation study using MATLAB and are listed in section
4. Finally in section5 the conclusion of the investigation is
highlighted.

2. Multiobjective Formulation

Let anL length binary sequence is given by

S = {s1, s2, s3, · · · , sL} (1)

where each element ofS has value is either +1 or -1.
The output of the matched filter that is the aperiodic

autocorrelation function for positive delays is given as

Ck(S) =

L−k∑

i=1

sisi+k (2)

wherek = 0, 1, 2, · · · , L − 1
A significant problem inherent in biphase pulse compres-

sion is that the autocorrelation function does not yield a
perfect impulse, that means it does not produceCk(S) = 0
for k 6= 0.Any non zero value ofCk(S) for k 6= 0 is
referred to as sidelobe where as the zero-offset correlation
valueC0(S) is called the mainlobe. The difference between
a pulse compression waveform and a simple pulse waveform
is in the existence and magnitude of these sidelobes. The

amplitude of the main peak of an autocorrelation is a
measure of signal-to-noise ratio improvement for a given
code. The sidelobes limit the usefulness of a code regardless
of the strength of the mainlobe. This is because sidelobes
signify ”self noise” which may be much greater than the
system noise. Codes are chosen for a given application based
on their length and sidelobe levels.

There are two frequently used sidelobe measures. The
first one is the peak sidelobe level(PSL) which is the largest
sidelobe in the autocorrelation function of the code and is
defined as

PSL = Max |(Ck(S))| , k 6= 0 (3)

The second is the integrated sidelobe level (ISL) defined
as the total energy contained in all the sidelobes. As the
signal is real valued the autocorrelation is real and symmetric
about the zero delay. The ISL is represented as

ISL = 2

L−1∑

k=1

C2
k(S) (4)

The PSL and ISL is represented as the terms defined in
(3) and (4) are simultaneously minimized to achieve desired
aperiodic codes.

3. Nondominated Sorting Genetic Algorithm-II

In 1967, Rosenberg suggested a genetic search to the
simulation of genetics and the chemistry of a population of
single-celled organisms with multiple properties or objec-
tives [11]. Genetic algorithm (GA) was originally proposed
by J. Holland [12] which imitates Nature’s robust way of
evolving successful organisms. The first practical algorithm,
called vector evaluated genetic algorithm (VEGA), devel-
oped by Schaffer [13]. One of the constraints of VEGA is
its bias towards some Pareto-optimal solutions. Subsequently
Deb and Srinivas [14] proposed the nondominated sorting
genetic algorithm(NSGA) which is a popular nondomination
based genetic algorithm for multi-objective optimization
problem. It is a very effective algorithm but has been gener-
ally not preferred for its heavy computational complexity,
lack of elitism and for choosing the optimal parameter
values. A modified version, NSGA-II was developed by Deb
et al. [15] as a better sorting algorithm which incorporates
elitism and without using a sharing parameter. A brief
outline of NSGA-II algorithm is given below.

1) Population Initialization : The population contains a
set of chromosomes. Each chromosome is initialised
randomly with binary bits having length same as the
code length.

2) Non-Dominated sort: The initialized population is
sorted based on non-domination

• for each individualp in main populationP per-
form the following



– Initialize the set of individuals dominated byp
Sp = φ.

– Initialize the number of individuals that domi-
natep i.e. np = 0.

– for each individualq in P

∗ if p dominatesq then

· Sp = Sp ∪ {q}

∗ else if q dominatesp then

· np = np + 1

– if np = 0 thenp belongs to the first front and
rank of individualp i.e. prank = 1. Update the
first front F1 by addingp to front one i.e.F1 =
F1 ∪ {p}

• This is carried out for all the individuals in main
populationP .

• Initialize the front counteri = 1
• perform the following ifith front is nonempty i.e.

Fi 6= φ

– Q = φ. The setQ is used to store the members
of the next front.

– for each individualp in front Fi

∗ for each individualq in Sp

· nq = nq − 1,decreament the domination
count for individualq

· if nq = 0, setqrank = i + 1. Updateq i.e.
Q = Q ∪ q.

– i = i + 1.
– setQ is the next front and henceFi = Q.

3) Crowding Distance Assignment: Once the non- dom-
inated sorting is complete the crowding distance is
assigned. Since the individuals are selected based on
rank and crowding distance, all the individuals in the
population are assigned a crowding distance value
front wise. The crowding distance is calculated as

• For each frontFi, n is the number of individuals.

– Initialize the distance for all individuals to be
zero i.e.Fi(dj) = 0, wherej corresponds to
an individual in frontFi.

– for each objective functionm

∗ Sort the individuals in frontFi based on
objective functionm i.e I = sort(Fi,m).

∗ Assign infinite distance to boundry values
for each individual inFi i.e I(d1) = ∞ and
I(dn) = ∞

∗ for k = 2 to (n − 1)

· I(dk) = I(dk) + I(k+1)·m−I(k−1)·m
fmax

m
−fmin

m

· where I(k) · m is the value of themth

objective function ofkth individual in I

4) Selection: The selection is carried out using a
crowded-comparison-operator(≺n). The comparison
is carried out as below

a) non-domination rankprank i.e. individuals in
front Fi will have their rank asprank = i.

b) crowding distanceFi(dj)

• p ≺n q if
– prank < qrank

– or if p andq belong to the same frontFi then
Fi(dp) > Fi(dq) i.e the crowding distance of
p should be moreq.

The individuals are selected using a binary tournament
selection with crowded comparison operator.

5) Genetic Operators: Single point crossover and muta-
tion operations as used in GA[16] are also employed
in NSGA-II.

6) Recombination and Selection: The offspring popu-
lation is combined with the current generation pop-
ulation and the total population is sorted based on
nondomination. The new generation is filled by chro-
mosomes from each front subsequently until the pop-
ulation size exceeds the current population sizeN .
If by adding all the individuals in frontFj the pop-
ulation exceedsN then individuals in frontFj are
selected based on their crowding distance sorted in
the descending order until the population size isN .

4. Simulation results

The NSGA-II algorithm dealt in section3 is used to obtain
the desired non periodic binary strings yield lowest possible
PSL and ISL. PSL and ISL are the two cost functions
are minimized using NSGA-II algorithm to generate binary
strings varying the lengths from 49 to 100. The PSL and ISL
values for each chromosome are determined according to (3)
and (4) respectively. The population is sorted based on non-
domination. Each individual in first front are given a rank
value of 1 and the same in second is assigned a rank value
of 2 and so on. Parents are selected from the population
by using binary tournament selection based on the rank and
crowding distance. An individual is selected if its rank is
less than the other or if its crowding distance is greater
than the other. The selected population generate offspring
using crossover and mutation operators. The crossover and
mutation probability used are 0.8 and 0.1 respectively. The
total population including the current population and current
off springs is sorted again based on non-domination and
only the bestN individuals are selected. The selection is
based on rank and crowding distance on the last front.
The population sizeN is taken as 200 and the number
of generations varied from 150 to 200.As the sequence
length increases generations increased to get better result.
In multi objective algorithms a pareto front contains more
than one sequence for each length. The sequences found by
the proposed method for length 49-100 which are better than
[5] are listed in Table1. The PSL and ISL values of [5] are
also presented in Table1 for the purpose of comparison.



Table 1: Sequences

Seq Len [5] NSGA II Sequence

PSL ISL PSL ISL

49 5 688 4 560 0011111000111111011000000100101100111001101010101

49 5 688 5 472 0011111100111111011000000100101100110100101010101

50 5 674 5 658 00010010011100111100100101000110111010101111111010

51 5 618 5 594 110000010000000110100110011100010001011110010101101

52 5 708 5 604 0000110011001100001111000000001010001011010101101101

53 5 700 5 604 00100101100100011001111001110111111001010100001111101

54 5 750 5 702 111001110111010110011110100110011111000010101101111110

55 5 902 5 830 1000111100010001011111001000110101011111110101101001001

56 6 1000 5 920 00111000100011011100011010001000000010011011010000111101

56 6 1000 6 776 00111010100011011100011010001000000010111011010000100101

57 6 920 6 784 110110010111110101110110101110001100010010000111111011000

58 6 1130 5 890 1001010001110111000101011111000011101001110110010000000010

58 6 1130 6 698 1001010001110011000101011011000011101001110110010000000000

59 5 1050 5 994 00000100101100001111111100010101100011110100011001001110101

60 6 1212 6 836 110000001010100111000001101011011011101001001100110001111011

61 6 1068 6 780 1010100101110001111000010011111101110111100100001100110100100

62 6 1094 6 998 10000001101101010010101110100000001000001111001110011001011011

63 5 934 5 902 100110101101111000010000000111010000010111001010001101010110011

64 6 1336 6 1024 0111011101010100001010011101001001011011110000100110000000110000

65 6 1328 6 1160 11111001101001011101000101110011000111001110110101001011111011110

66 6 1410 6 1010 011000110001010001010101101100110110111111100101000011111000110111

67 6 1218 6 1098 1111100000111101111111010110001010010100101100101100110010001100101

68 6 1252 6 1180 10111100110001010101100111000000110100000010011001011010111110010100

69 6 1500 6 1236 101100100110010010100011101000010110001110010100111111100100001000001

70 6 1454 6 1422 0010110000110001110100110110000010101000010010001011101111011000100111

71 7 1860 7 1518 11011100010111001010110110100111101101010111111111000100100100110000111

72 7 1744 7 1568 010001010111111101010010001111001100101111011011010111011010001111100001

73 6 1504 6 1312 0100010101101110011001010001111100000111110010100001100010110111111110110

74 7 1786 7 1578 01110010110000110000111010001001001011110000000010000011011100110011101010

75 6 1250 6 1130 010111101010111100011011100111011001010101111101001001001100000110011110011

76 7 1972 7 1580 0101000010010000101000111001011101100011110010011010100010111111110010001011

77 6 1560 6 1396 11001011001110010110000110001000010001000101100010111100101010100100000111111

78 9 2150 7 1670 11111110000011010000000101000111000111001001010010111001000100011010110010000

1

79 7 2246 6 1526 11111010011010100010101101001011000100001011001101111111100011110111011000001

11

79 7 2246 7 1454 01011010011010100010101101001011100100001011001101111111100011110111011000001

11

80 8 2240 7 1584 10000110001001111000001010111100100110011010101001011101111111011001001010001

111

81 7 1824 7 1720 00110011100100010101010100000011001011010011111011010100100000011011010001110

0001

82 7 2162 7 1826 00000011110000011110010100000000000110101010011000110110101101110011001011001

10100

continued on the next page . . .



Sequences (continued . . .)

Seq Len [5] [5] NSGA-II NSGA-II Seq

PSL ISL PSL ISL

83 7 2202 7 1986 01000001010100111101010000011110000010001100010100100110111101101100100111010

110111

84 7 2636 7 2372 10110001011111010000111010001100001111001011101101010010000010010111001100010

1000100

85 7 2332 7 1916 11111100000111011010110010100100110111110110111001011000101010011100101000110

01110000

86 7 2062 7 1902 01110011011101000100001000111100010100000001010000100011111010011011110010100

110110001

87 8 2520 7 2046 00100100001100100111111101110001011110000100111010100101000000011000110100110

0000110010

87 8 2520 8 1982 00100100001100100101111101110001011110000000111010100101000001011000110100010

0000110010

88 7 2264 7 2224 10110110000101011111001000110011010010101010011000111110000110011000111110111

11111110100

89 7 2128 7 2112 01111011010100000110001111110101010011110010000010110010001011100101101110011

111100011001

90 8 2698 8 2346 01000110001111001011101001001000001011101110100100011101111010010001100100001

0101100010011
91 7 2226 7 2082 11100000000011001111111111001110111110010011101011001011010010111000101010100

10101100111010

92 7 2004 7 1844 00110110010011010111001001010011100000011010011010100100111111111101010110001

110111100011101

93 9 3316 7 2476 01111011110110011001101000000001010011000011111001100000101010100111110000001

1000110101010010

94 8 3062 8 2630 11110010001100011101100010110001101001110001011101101011111010011010100010111

11111101101101100

95 8 3374 8 2262 11101001001010100010111100001011110110100000010001000011001010001000001100011

111001110010011001

96 10 3520 8 2416 00010001111100001010000111101111010101100110101111001001101010001011111111101

1011011100001001100

97 9 3576 8 3440 11001011101010111001000100001011000001001110111100100011001011010111000000010

00000110111010011110

97 9 3576 9 2696 01001010100010101001010100001011000001001110111100100011001011011111000000110

00001110011010011110

98 8 2930 8 2594 01000000000011000110000111011101100111000010101101101011110000011001111010010

111010011001001011101

99 8 2794 8 2386 10111100010010010001000000001101100110101101110001100101101101011010101000100

1111100011010001000111

100 8 3748 8 2508 00111110000110110111001110011011010111101100101100110101001011101100001000011

10111111010101110001010



5. Conclusion

By using NSGA-II algorithm as given in section3 a list of
sequences of length 49-100 is obtained, as shown in Table1
which also contains PSL and ISL value of the sequences.0’s
are used in place of -1’s to conserve space. It is observed
from the table that the codes having same PSL value have
less ISL value compared to [5].Further it observed that at
lengths 49,56,58,79,87 and 97 two different codes are found
out of which one code optimal with respect to both PSL
and ISL. The result reveals that this method performs better
than the approach described in [5]. The search for optimum
sequence depends on the selection of the initial population
of parent sequences. As the sequence length increases the
search procedure requires more time for obtaining a good
solution. The quality of solution improves with increase in
the number of generations.
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