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ABSTRACT: A C0 finite element formulation using a higher-order shear deformation theory is 

developed and used to analyze static and dynamic behavior of laminated shells. The element 

consists of nine degrees-of-freedom per node with higher-order terms in the Taylor’s series 

expansion which represents the higher-order transverse cross sectional deformation modes. The 

formulation includes Sanders’ approximation for doubly curved shells considering the effects of 

rotary inertia and transverse shear. A realistic parabolic distribution of transverse shear strains 

through the shell thickness is assumed and the use of shear correction factor is avoided. The shell 

forms include hyperbolic paraboloid, hypar and conoid shells. The accuracy of the formulation is 

validated by carrying out convergence study and comparing the results with those available in the 

existing literature.  

KEYWORDS: Hyperbolic paraboliods; hypar; conoids; higher-order theory; finite 

element method.  

INTRODUCTION 

Shell structures are widely used in all industrial applications; especially those related 

to automobile, marine, nuclear, civil, aerospace and petrochemical engineering. In civil 

engineering construction, conoid, hyperbolic paraboloid and elliptic paraboloid shells are 

commonly used as roofing units to cover large column-free areas. Conoid shells (Figure 1-
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CON) provide ease of fabrication and allow sun light to come in. They are most suitable 

when greater rise is needed at one end. The hyperbolic paraboloid shells are aesthetically 

appealing and are used widely.  

 Laminated composites are important structural materials because of their high 

strength to weight and strength to stiffness ratios. The mechanical properties of the 

laminated composites depend on the degree of orthotropy of the layers, ratio of the 

transverse shear modulus to the in-plane shear modulus and stacking sequence of the 

laminate. By appropriate orientation of the fibres in each lamina, desired strength and 

stiffness can be achieved.  

Study of static and dynamic behavior of laminated composite shells has gained much 

interest of many researchers from past few decades. In analyzing and designing complex 

structures, such as doubly curved shells, whose exact behavior pattern is difficult to 

conceive, it is deemed to fit to have a preliminary idea regarding the nature and 

magnitudes of displacements and stresses over the entire structure by adopting a simpler 

and cheaper method. Obtaining closed form solutions for such problems are complex; 

therefore, to efficiently and conveniently solve the problem, the finite element method is 

widely used. Many of the classical theories developed for thin elastic shells are based on 

the Love-Kirchhoff assumptions in which the normal to the mid-plane before deformation 

is considered to be normal and straight after the deformation. It underpredicts deflections 

and overpredicts natural frequencies and buckling loads. These deficiencies are mostly due 

to the neglect of transverse shear strains. The errors are even higher for structures made of 

advanced composites, whose elastic modulus to shear modulus ratios are very large.  The 

first order shear deformation theory (FSDT) developed by Reissner [1] and Mindlin [2] 

considers a constant value of transverse shear strains through the thickness of the plate and 

thus requires shear correction factors. The shear correction factors are introduced to 

 



account for the discrepancies between the constant state of shear strains in the FSDT and 

the parabolic distribution of shear strains in the elastic theory. Many researchers [3-10] 

developed higher-order theories in which the displacements of the middle surface are 

expanded as cubic functions of the thickness co-ordinate and the transverse displacement 

is assumed to be constant through the thickness. This displacement field leads to the 

parabolic distribution of the transverse shear stresses and, therefore, the use of shear 

correction factors is avoided. 

Yang [3] developed a higher-order shell element with three constant radii of curvature, 

two principal radii, orthogonal to each other and one twist radius. The displacement 

functions u, v and w are composed of products of one-dimensional Hermite interpolation 

formulae. Reddy and Liu [4] modified Sanders’ theory to develop a higher-order shear 

deformation theory of laminated elastic shells, which accounts for tangential stress free 

boundary conditions. They also presented Navier-type solutions for bending and free 

vibration problems. Shu and Sun [5] developed an improved higher-order theory for 

laminated composite plates. This theory satisfies the stress continuity across each layer 

interface and also includes the influence of different materials and ply-up patterns on the 

displacement field. Liew and Lim [6] proposed a higher-order theory by considering the 

Lamé parameter (1 / )xz R+  and (1 / )yz R+ for the transverse strains, which were 

neglected by Reddy and Liu [4]. This theory accounts for cubic distribution (non-even 

terms) of the transverse shear strains through the shell thickness in contrast with the 

parabolic shear distribution (even-terms) of Reddy and Liu [4]. Kant and Khare [7] 

presented a higher-order facet quadrilateral composite shell element. Bhimaraddi [8], 

Mallikarjuna and Kant [9], Cho et al. [10] are among the others to develop higher-order 

shear deformable shell theory.  It is observed that except the theory of Yang [3], remaining 

 



higher-order theories do not account for twist curvature (1/Rxy), which is very much 

essential while analyzing shell forms like hypar and conoid shells.   

Static and dynamic analyses of shell panels were carried out by many researchers in 

the past few decades. Choi [11], with modified isoparametric element, analyzed the 

conoidal shells by adding four extra nonconforming displacement modes to transverse 

displacement. Ghosh and Bandyopadhyay [12, 13] studied bending behavior of conoidal 

shells using the finite element method and Galerkin method. Simplified bending analysis 

of doubly curved shells was done by Aditya and Bandyopadhyay [14] with modified 

boundary conditions. Chakravorty et al. [15,16] carried out finite element dynamic 

analysis of doubly curved shells which include hyperbolic paraboloids (Figure 2-HPR), 

hypars (Figure 3-HYP) and conoids.  Stavridis [17], by analytical treatment of Marguerre 

equations with inertia terms added, studied free vibration of elliptical, hyperbolic 

paraboloid, hypar, conoid and soap bubble isotropic shells. The effects of presence of the 

stiffeners and the cutouts on these types of shells were studied by Nayak and 

Bandyopadhyay [18, 19]. Higher-order theories were widely used for free vibration 

analysis of laminated composite shells by many researchers [4, 6, 8, 20,21]. 

 To the best of the authors’ knowledge, however, literature is not available related to 

the application of higher-order theory for studying the static and dynamic behavior of 

laminated composite shells with the combination of all three radii of curvature. Therefore, 

in the present analysis, static and free vibration behavior of laminated composite 

anticlastic shells are studied. A Higher-order shear deformation theory (HSDT), developed 

by Kant and Khare [7], is used by extending it to the shells with all three radii of 

curvature.  

 



THEORY AND FORMULATION 

Let us consider a laminated shell element made of a finite number of uniformly thick 

orthotropic layers (Figures 4 and 5), oriented arbitrarily with respect to the shell co-

ordinates (x,y,z). The co-ordinate system (x,y,z) is chosen such that the plane x-y at z=0 

coincides with the mid-plane. In order to approximate the three-dimensional elasticity 

problem to a two-dimensional one, the displacement components u(x,y,z), v(x,y,z) and 

w(x,y,z) at any point in the shell space are expanded in Taylor’s series in terms of the 

thickness co-ordinates. The elasticity solution indicates that the transverse shear stresses 

vary parabolically through the element thickness. This requires the use of a displacement 

field in which the in-plane displacements are expanded as cubic functions of the thickness 

co-ordinate. The displacement fields, which satisfy the above criteria are assumed in the 

form as given by Kant and Khare [7] 
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where u, v and w are the displacements of a general point (x,y,z) in an element of the 

laminate along x, y and z directions, respectively. The parameters u0, v0, w0, xθ and yθ are 

the displacements and rotations of the middle plane, while * * *
0 0u , , xv θ and *

yθ are the higher-

order displacement parameters defined at the mid-plane. 

The linear strain-displacement relations according to Sanders’ approximation are, 
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Substituting Equation 1 in Equation 2, 
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1C is a tracer by which the analysis can be reduced to that of shear deformable Love’s first 

approximation and ( )0 0.5 1/ 1/x yC R= − R

k

γ

is the result of Sander’s theory which accounts 

for the condition of zero strain for rigid body motion. 

The constitutive relations for a typical lamina k with reference to the fibre-matrix co-

ordinate axis 1-2 (Figure 5) are written as, 
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or, in matrix form, 
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For the elastic constant matrix to any arbitrary axis with which the material principal 

axes make an angle θ , standard co-ordinate transformation is required. Thus, the off-axis 

elastic constant matrix is obtained from the on-axis elastic constant matrix using the 

relation 

[ ] [ ]T
ijijQ T Q T⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ , where [T] is the transformation matrix. 

Therefore, the stress-strain relations for a lamina about any axis are given by, 
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Integrating the stresses through the laminate thickness, the resultant forces and 

moments acting on the laminate are obtained. 
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or Dσ ε= , where, 
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, where , ,  and mD bD cD sD are given in Appendix A 

FINITE ELEMENT FORMULATION 

An eight-noded isoparametric Co element with nine degrees of freedom per node is 

used. The displacement vector d at any point on the mid-surface is given by: 

8
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where di is the displacement vector corresponding to node i and Ni is the interpolating 

function associated with the node i . 

Knowing the generalized displacement vector {d} at all points within the element, the 

generalized mid-surface strains at any point given by Equation 3, are expressed in terms of 

global displacements in the matrix form as: 
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where Bi is a differential operator matrix of interpolation functions and obtained from  

Equation 4. The element stiffness matrix for the element e, which includes membrane, 

flexure and the transverse shear effects, and the element mass matrix are given by the 

following equations: 
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where [N] is the shape function matrix and [m] is the inertia matrix, as given in Appendix 

B. In all the numerical computations, the selective integration rule is employed. A 3×3 

Gaussian rule is used to compute in-plane, coupling between in-plane and bending 

deformations, while a 2×2 rule is used to evaluate the terms associated with transverse 

shear deformation. The element mass matrix is evaluated using a 3×3 Gaussian rule. The 

element matrices are then assembled to obtain the global [K] and [M] matrices. The free 

vibration analysis involves determination of natural frequencies from the condition 

2([ ] [ ]) 0nK Mω− =  

This is a generalised eigenvalue problem and is solved by using the subspace iteration 

algorithm. 

RESULTS AND DISCUSSIONS 

A computer program is developed based on the above formulation. A parallel program 

is developed based on the first order shear deformation theory (FSDT) in order to compare 

the results with those of HSDT. The shell-forms mainly considered here are hyperbolic 

paraboloid, hypar and conoid shells.  

The following two boundary conditions are used in the present analysis: 

(i)   Simply supported boundary (S-S-S-S) having SS1 for isotropic and cross-ply 

laminates and SS2 for angle-ply laminates; 

SS1:  at x = 0, a; * *
0 0 0 0,y yv w vθ θ= = = = = * *

0 0 0 0,x xu w uθ θ= = = = =  at y = 0, b.  

SS2:  at * *
0 0 0 0,y yu w uθ θ= = = = = 0,x a= ;  and * *

0 0 0 0,x xv w vθ θ= = = = =  at y = 0, b.  

 



(ii)   Clamped boundary (C-C-C-C): * * * *
0 0 0 0 0 0,x y x yu v w u vθ θ θ θ= = = = = = = = =  at x = 0, 

a and y = 0, b. 

Non-dimensional length parameters are designated by /x x a=  and /y y b= . 

Non-dimensional center deflection parameter . 3 4
2( / ) 10zw wh E w a= × 00

Non-dimensional frequency parameter ( )2
2/ /a h Eω ω ρ=  

Unless otherwise specified the elastic properties of the structure is taken as 1 2/ 2E E 5= , 

,  and 12 13 20.5G G E= = 23 20.2G E= 12 0.25ν = . 

Validation of the present formulation 

In order to validate the present formulation, the following problems are taken up from 

the existing literature. 

Convergence study  

First, convergence study is carried out in order to determine the uniform mesh size N 

 N at which the displacement values converge. Figure 6 shows the convergence results of 

a single layer SS1 spherical shell subjected to sinusoidal loading with 

, ,

×

/ 1a b = / 100a h = x yR R R= =  and / 1R a =  with the orthotropic elastic properties as 

mentioned earlier. The obtained results are compared with the 3D results of Bhimaraddi 

[22]. The mesh size parameter N is varied from 2 to 10 and from Figure 6, it is found that 

the values of displacement converge for the N value 6. The subsequent analysis is carried 

out using the uniform mesh size of 6× 6. 

Comparison of results 

1. A simply supported (SS1) three-layered symmetric cross-ply (00/900/00) rectangular 

plate of aspect ratio b/a=3 and subjected to sinusoidal load is considered here. Non-

dimensional center deflection parameter for this problem is given by 

. The obtained results are compared with those of Pagano [23] 3 4
2( / ) 100zw wh E w a= ×

 



employing three-dimensional elasticity theory and of Reddy [24] using higher-order plate 

theory and are listed in Table 1. It is found that the present HSDT results are in good 

agreement with the three-dimensional elasticity results given by Pagano [23] for all ratios 

of a/h considered here. However, it is also seen that FSDT gives fairly good results for 

thin plates, though fails to give satisfactory results for thick plates.   

2. A spherical shell with /a b 1=  and x yR R R= =  with SS1 boundary condition and 

subjected to sinusoidal loading is considered for the analysis. This problem was earlier 

solved by Bhimaraddi [22]. The lamination schemes considered here are single layered 

orthotropic and two layered cross-ply 00/900. The purpose of taking this problem is to 

confirm that the present formulation gives consistent results even for single layered shells. 

The center displacements obtained are non-dimensionalised as , where q is the 

intensity of the sinusoidal load.  Table 2 shows the non-dimensional center displacements 

of the spherical shell with thickness to side ratios (h/a) of 0.01, 0.1 and 0.15 and R/a ratios 

1 to (plate) using both FSDT and HSDT formulations.  From Table 2, it is found that the 

results obtained from the present HSDT formulation match well with the 3D results 

reported by Bhimaraddi [22]. 

22 /wE q

∞

 3. A conoid shell with a = 2.521m, b = 1.828m, Hh = 0.457m, hl = 0.228m, h = 12.7mm, 

E=38.843kN/mm2, 0.15ν = , with simply supported (SS1) boundary condition and 

subjected to a uniformly distributed pressure of 2.8734 x 10-3 N/mm2 is considered for 

analysis. This problem was earlier solved by Choi [11]. Figure 7 shows the variation of 

transverse displacement (w) along 0.5x =  and 0.5y =  to 1.0. Figure 8 shows the variation 

of transverse displacement (w) along 0x =  to 1.0 and 0y = . In general, the results obtained 

from the present formulations are seen to be comparable with those of Choi [11]. 

4. Free vibration analysis is carried out for different types of shell geometry to compare 

the obtained frequency parameters with the available results. Frequency parameters ω  are 

 



listed in Table 3 and found matching well with the available results of Nayak and 

Bandyopadhyay [19]. It is also observed that the frequency results from HSDT are on the 

lower side compared to FSDT results.  

After validating the present HSDT results with those of available literature, the present 

HSDT is employed to study the static and dynamic behavior of shells with different 

geometries, loadings, boundary conditions and lamination schemes which are given in the 

subsequent sections. 

 

Static analysis 

To the best of authors’ knowledge, no published results are available on the 

application of higher-order theories for static and dynamic analysis of shell forms like 

hypars and conoids. In the present work, HSDT is employed to carry out static and free 

vibration analyses on such shell forms.  

Cross-ply laminated hypar shells having eight lamination schemes of 00/900, 900/00, 

00/900/00, 900/00/900, 00/900/900/00, 900/00/00/900, 00/900/00/900, and 900/00/900/00 with 

simply supported and clamped boundary conditions and varying c/a ratios from 0 to 0.2 

are subjected to uniformly distributed and sinusoidal loadings. Out of eight lamination 

schemes, four are antisymmetric (00/900, 900/00, 00/900/00/900 and 900/00/900/00) having 

two and four layers respectively. The other four lamination schemes (00/900/00, 900/00/900, 

00/900/900/00 and 900/00/00/900) are symmetric having three and four layers. Common 

geometric parameters for all the hypar shells are / 100a h =  and . It may be noted 

that the c/a ratio is an indicator of the twist curvature of the hypar shell. 

/a b =1

 The non-dimensional central deflections of the two antisymmetric two layers 

lamination schemes (00/900 and 900/00) are found to be the same for different c/a ratios 

subjected to both cases of loadings and boundary conditions. Similarly, the two 

 



antisymmetric four layers lamination schemes 00/900/00/900 and 900/00/900/00 are also 

showing the same values of  for all the values of c/a, two different types of loadings and 

boundary conditions. It is interesting to note further that the two symmetric lamination 

schemes of both three layers (00/900/00 and 900/00/900) and of four layers (00/900/90

w

0/00 

and 900/00/00/900) are also showing the respective identical values of  for different 

values of c/a for the two cases of loadings and boundary conditions. 

w

Accordingly, Tables 4-7 present the values of  for four different lamination schemes 

having two, three and four layers for all the values of c/a, two types of loadings and 

boundary conditions. The least values of  are made bold in four tables for their easy 

identification. 

w

w

The following discussion shows the influence of the boundary conditions, c/a ratio and 

lamination schemes on the non-dimensional central deflection  of the hypar shells 

subjected to two different types of loadings. 

w

The reduction of the deflection with the increase of c/a ratio for all eight lamination 

schemes indicates the increase of the stiffness of the shell with the increase of twist 

curvature for the two types of boundary conditions and loadings. 

The superiority of clamped boundary condition is observed (as expected) from the 

lower values of  when compared to those respective values with simply supported 

boundary condition for each of the two types of loadings. Needless to mention that this 

observation is for all values of c/a, lamination schemes and other constant values of 

different geometrical parameters and material properties as given in the notes below each 

of the Tables 4-7.  

w

• The superior performance of 00/900/00 lamination scheme having three 

symmetric layers when c/a = 0 (plate) is observed from the lowest value of w  

 



out of all the values furnished in Tables 4-7. Thus, it is inferred that the 00/900/00 

lamination scheme is best for plates for the two types of boundary conditions and 

loadings and geometrical parameters and material properties as mentioned in the 

earlier discussion. 

• The superiority of the same 00/900/00 lamination scheme is also observed for 

most of the cases of hypar shells (c/a from 0.05 to 0.2 in Tables 4, 5 and 7) for 

the two types of loadings and boundary conditions except for the simply 

supported hypar shells subjected to sinusoidal load (Table 6). 

• In case of simply supported hypar shell subjected to sinusoidal load, the values 

of w  from Table 6 reveals the superiority of lamination schemes of four layers 

(either symmetric 00/900/900/00 for c/a=0.05 or antisymmetric 00/900/00/900 for 

c/a ranging from 0.1 to 0.2). 

Free vibration analysis 

To study the free vibration behavior of different shell forms using HSDT, shells of 

three different geometries (hyperbolic paraboloid, hypar and conoid shell) are considered 

with three different boundary conditions: simply supported (S-S-S-S with SS2 conditions), 

clamped (C-C-C-C) and corner supported. The considered shell panels are antisymmetric 

angle-ply with three different lamination schemes (150/-150, 300/-300 and 450/-450). Table 

8 gives the non-dimensional frequency parameterω . A detailed study of the results of 

Table 8 shows the following two common observations regarding the increase of the 

stiffness of the shell as a result of having lower values of the non-dimensional frequency. 

1. The C-C-C-C boundary condition shows the best performance with respect to the 

stiffness followed by S-S-S-S and corner supported boundary conditions for all three 

shell forms 

 



2. The rigidity of shell becomes highest when h/R = -1/300 for hyperbolic paraboloids, 

c/a = 0.2 for hypars and hl/Hh = 0.2 for conoids, as evident from the higher values of 

the respective ω , when compared to those with other values of h/R, c/a and hl/Hh  for 

hyperbolic paraboloids, hypars and conoids, respectively.  

The above discussion of the results of Table 8 regarding the superiority of the shell 

regarding the stiffness is made considering the variation of the specific parameter and 

keeping the other parameters constant.  

Figures 9 and 10 show the effects of hl/Hh ratio on the frequency parameter (ω ) for a 

S-S-S-S conoid shell of ; / 100a h = /a b 1=  for four different lamination schemes with 

ratios 2.5 and 5, respectively. Figures 11 and 12 also show the effect of hl/Hh ratio 

on the frequency parameter (

/ ha H

ω ) for a clamped conoid shell. The superiority of the 

clamped conoid shell is evident from the higher values of ω  from Figures 11 and 12 as 

compared with those of Figures 9 and 10 for the S-S-S-S boundary condition. The range of 

variation of ω  is comparatively narrow for each of the four different orientations for the 

C-C-C-C conoids (Figures 11 and 12) than the same for the S-S-S-S conoids (Figures 9 

and 10). 

The values of ω  are increasing in Figures 9 and 10 with the increase of hl/Hh for both 

the values of a/Hh as 2.5 and 5 when the boundary condition is S-S-S-S. This increase of 

ω  has two distinct zones in most of the stacking sequences; initially with steep and almost 

constant slope upto hl/Hh around 0.3 and then with much reduced slopes. Critical study of 

Figures 9 and 10 further reveals marginal reduction of ω  in the second zone for some of 

the orientations when the boundary condition is simply supported for both the values of 

a/Hh as 2.5 and 5. 

 



The nature of variation of ω  is somewhat different for the clamped conoids (Figures 

11 and 12) for all four types of lamination scheme, where there is a tendency of reduction 

with the increase of hl/Hh  initially, followed by the increase of ω  at the later stage. 

CONCLUSIONS 

Static and free vibration analyses of laminated anticlastic shells are carried out using a 

higher-order theory taking into account all the three radii of curvature. From the present 

study the following conclusions are made: 

1. A comparative study of the results of plates and different shell forms employing present 

formulation with those of available literature (Tables 1-3, Figures 7 and 8) shows that the 

present higher-order formulation gives fairly good results. 

2. The three layer lamination scheme (00/900/00) is having the maximum stiffness showing 

the least deflection for plates (when c/a=0) subjected to two types of loadings and 

boundary conditions and with other constant values of geometric parameters and material 

properties (Tables 4-7). 

3. The above three layer lamination scheme (00/900/00) also proves to have the maximum 

stiffness for most of the cases of hypar shells taken up in the present investigation (Tables 

4, 5 and 7). 

4. The superiority of four layer lamination scheme (either symmetric 00/900/900/00 or 

antisymmetric 00/900/00/900) is observed for simply supported hypar shells subjected to 

sinusoidal loadings (Table 6). 

5. The relevant discussion on the results (Table 8) of free vibration analysis reveals the 

superiority of the C-C-C-C with regard to rigidity, followed by S-S-S-S and corner 

supported boundary conditions for all three shell forms (hyperbolic paraboloid, hypar and 

conoid). 

 



Such increased rigidities are largely due to increased shell actions when h/R=-1/300 

for hyperbolic paraboloid, c/a=0.2 for hypar and hl/Hh = 0.2 for conoid shells when the 

other respective parameters are constants. 

6. Authors’ results of free vibration of conoids show the superiority of the clamped 

conoids having comparatively lower range (Figures 11 and 12). Simply supported conoids, 

however, show an increasing frequency initially with steep slope upto hl/Hh around 0.3 

and then with much reduced slopes (Figures 9 and 10). 
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APPENDIX A 

Assuming 1( i i
i k k ) /H z z+= − i , where i=1, 7.  The elements of the submatrices of the 

rigidity matrix are written in the following terms: 

1 1 1 3 311 12 16 11 12 16

1 1 3 3 322 26 12 22 26

1 3 366 16 26 66

1 5 511 12 16

5 522 26

566

Symm.

LN

m
k

Q H Q H Q H Q H Q H Q H
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Q H Q H Q H Q H
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3
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The elements of Dc and Db matrices can be obtained by replacing (H1, H3 and H5) by (H2, 

H4 and H6) and (H3, H5 and H7) respectively, and 

 



1 1 3 3 2 2 4 444 45 44 45 44 45 44 45

1 3 3 2 2 455 45 55 45 55 45 55

5 5 4 4 6 644 45 44 45 44 45

5 4 4 655 45 55 45 55

3 3 5 544 45 44 45

3 555 45 55

7 744 45
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APPENDIX B 

The inertia matrix [m] for the present higher-order theory is given by, 

1 2 3

1 2 3 4

1

2 3 4 5

2 3 4

3 4 5

3 4 5 6

4 5 6 7

4 5 6

0 0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0

[ ] 0 0 0 0 0
0 0 0 0 0

0 0 0 0
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0 0 0 0 0

I I I
I I I I

I
I I I I

m I I I I
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I I I I
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0

0
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I

I
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 The parameters I1, I3 and (I5, I7) are linear inertia, rotary inertia and higher-order 

inertia terms, respectively. The parameters I2, I4 and I6 are the coupling inertia terms and 

are expressed as follows: 

1
2 3 4 5 6

1 2 3 4 5 6 7
1

( , , , , , , ) (1, , , , , , )
kL

k

zN

k
k z

I I I I I I I z z z z z z dzρ
+

=

=∑ ∫ , where kρ is the material 

density of the kth layer and the shape function matrix [N] is given by 
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⎥  i=1,8 and Ni is the shape function for the node i. 
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Figure captions 

 
Figure 1.  Conoid (CON) 
 
Figure 2.  Hyparbolic paraboloid  (HPR) 
 
Figure 3.  Hypar (HYP) 
 
Figure 4.  Laminated composite doubly curved shell element 

 
Figure 5.  Lamina reference axis and fibre orientation  
 
Figure 6. Convergence of displacement values 

Figure 7. Variation of transverse displacement (w) along 0.5x =  
 
Figure 8. Variation of transverse displacement (w) along 0y =   

Figure 9. Effect of  ratio on the non-dimensional frequencies of a S-S-S-S conoid 

shell with  

/lh H

ha H =

h

.5

h

h

.5

/ 2

Figure 10. Effect of  ratio on the non-dimensional frequencies of a S-S-S-S conoid 

shell with  

/lh H

ha H =/ 5

Figure 11. Effect of  ratio on the non-dimensional frequencies of a C-C-C-C conoid 

     shell with 

/lh H

/ 2ha H =  

Figure 12. Effect of  ratio on the non-dimensional frequencies of a C-C-C-C conoid 

shell with  

/lh H

ha H =

h

/ 5
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Figure 7.  
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Figure 8.  
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Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table captions 
 
Table 1 Non-dimensional center deflection of cross-ply laminated plate (b/a=3) 
 
Table 2 Non-dimensional centre displacements of SS1 spherical shell subjected to 
sinusoidal loading. 
Table 3 Non-dimensional frequencies ω  of simply supported cross-ply [00/900]4 
laminated composite shells 
 
Table 4 Non-dimensional central deflection  for simply supported cross-ply laminated 
hypar shells subjected to uniformly distributed load 

w

 
Table 5 Non-dimensional central deflection  for cross-ply laminated clamped hypar 
shells subjected to uniformly distributed load 

w

 
Table 6 Non-dimensional central deflection  for cross-ply laminated simply supported 
hypar shells subjected to sinusoidal load 

w

 
Table 7 Non-dimensional central deflection  for cross-ply laminated clamped hypar 
shells subjected to sinusoidal load 

w

 
Table 8 Non-dimensional frequency parameter ω   for different types of antisymmetric 
angle ply θ0/-θ0 laminate shells. 
 
 
 
 

 



 
Table 1  
a/h Present FSDT Present HSDT Reddy [24] Pagano [23] 
4 2.3567 2.6436 2.6411 2.82 
     

10 0.8021 0.8683 0.8622 0.919 
     

20 0.5782 0.5956 0.5937 0.610 
     

100 0.5064 0.5071 0.507 0.508 
 
 

Table 2  
  Single layer orthotropic 0/90 

R/a  h/a=0.01 h/a=0.1 h/a=0.15 h/a=0.01 h/a=0.1 h/a=0.1
5 

Bhimaraddi [22] 75.397 4.7117 2.5641 54.129 4.6920 2.7386 
FSDT 74.1985 3.4573 1.7293 53.4962 3.7840 1.9856 1 
HSDT 74.3969 3.8226 1.9481 53.5448 4.0216 2.1687 

Bhimaraddi 
[22] 285.72 5.9693 2.6788 212.33 8.8092 3.8190 

FSDT 282.3650 5.2680 2.3306 210.8660 7.8942 3.3338 2 

HSDT 283.0607 5.4683 2.4157 211.0061 8.1085 3.4146 
Bhimaraddi 

[22] 593.43 6.2215 2.6635 456.46 10.512 4.0856 

FSDT 587.5019 5.8336 2.4909 463.0167 9.8813 3.8131 3 

HSDT 588.8315 5.9359 2.5253 463.2959 9.9778 3.8168 
Bhimaraddi 

[22] 953.25 6.3014 2.6494 799.81 11.263 4.1758 

FSDT 944.8427 6.0614 2.5524 796.2405 10.8358 4.0152 4 

HSDT 946.7702 6.1186 2.5659 796.6894 10.8526 3.9805 
Bhimaraddi  

[22] 1325.5 6.3332 2.6393 1198.7 11.639 4.2131 

FSDT 1315.0579 6.1729 2.5818 1193.9434 11.3430 4.1161 5 

HSDT 1317.4404 6.2069 2.5851 1194.5739 11.3115 4.0611 
Bhimaraddi 

[22] 2767.7 6.3593 2.6256 3584 8 12.150 4.2457 

FSDT 2753.6250 6.3282 2.6222 3574.1976 12.0980 4.2589 10 

HSDT 2756.1901 6.3286 2.6111 3575.4383 11.9871 4.1737 
Bhimaraddi 

 [22] 4343.0 6.3343 2.5879 10674.0 12.257 4.1291 

FSDT 4333.9229 6.3817 2.6360 10654.1719 12.3725 4.3087 ∞  

HSDT 4333.7875 6.3702 2.6199 10652.4018 12.2305 4.2126 
 

 



 
 

Table 3  

Shell Type Ref.  [19] Present FSDT Present HSDT 

Elliptic paraboloid 47.384 47.380 47.341 
    

Hyperbolic 
paraboloid 14.743 14.742 14.596 
    

Hypar 52.002 52.014 51.291 
    

Conoid 81.097 80.981 80.918 
Note: a/b=1, a/h=100, for elliptic paraboloid, h/Rx= h/Ry =1/300; for hyperbolic 
paraboloid, h/Rx= -h/Ry =1/300; for hypar, c/a=0.2; for conoid, a/Hh=2.5, hl/Hh = 0.25; 

 
  
 
 
Table 4  
c/a ( ) 0 00 / 90 ( ) 0 00 / 90 / 00 0 0( ) 0 0 00 /90 / 90 / 0 ( ) 0 0 00 / 90 / 0 / 90
0 16.9763 6.7055 6.8436 8.1137 
     

0.05 2.3774 1.8988 1.9629 2.0922 
     

0.10 0.6193 0.5680 0.5972 0.6252 
     

0.15 0.2610 0.2493 0.2638 0.2767 
     

0.20 0.1388 0.1360 0.1434 0.1504 
Note: ;/ 1a b = / 100a h = ; ;1 2/ 2E E = 5 23 20.2G E= ; 12 13 20.5G G E= = ; 12 0.25ν =  
 
 
 
Table 5 
c/a ( ) 0 00 / 90 ( ) 0 00 / 90 / 00 0 0( ) 0 0 00 /90 / 90 / 0 ( ) 0 0 00 / 90 / 0 / 90
0 3.9672 1.4189 1.4859 1.7894 
     

0.05 1.3371 0.8008 0.8459 0.9640 
     

0.10 0.3901 0.3265 0.3451 0.3791 
     

0.15 0.1576 0.1564 0.1613 0.1732 
     

0.20 0.0805 0.0880 0.0879 0.0917 
Note: ;/ 1a b = / 100a h = ; ;1 2/ 2E E = 5 23 20.2G E= ; 12 13 20.5G G E= = ; 12 0.25ν =  
 

 



 
Table 6  
c/a ( ) 0 00 / 90 ( ) 0 00 / 90 / 00 0 0( ) 0 0 00 /90 / 90 / 0 ( ) 0 0 00 / 90 / 0 / 90
0 10.6524 4.3430 4.3441 5.0857 
     

0.05 1.6785 1.3973 1.3511 1.3866 
     

0.10 0.5672 0.5390 0.4966 0.4781 
     

0.15 0.3167 0.2966 0.2716 0.2545 
     

0.20 0.2180 0.1974 0.1800 0.1680 
Note: ;/ 1a b = / 100a h = ; ;1 2/ 2E E = 5 23 20.2G E= ; 12 13 20.5G G E= = ; 12 0.25ν =  
 
 
Table 7  
c/a ( ) 0 00 / 90 ( ) 0 00 / 90 / 00 0 0( ) 0 0 00 /90 / 90 / 0 ( ) 0 0 00 / 90 / 0 / 90
0 2.8703 1.0783 1.0967 1.2944 
     

0.05 1.0168 0.6331 0.6440 0.7138 
     

0.10 0.3335 0.2783 0.2826 0.2988 
     

0.15 0.1524 0.1420 0.1433 0.1484 
     

0.20 0.0852 0.0836 0.0837 0.0836 
Note: ;/ 1a b = / 100a h = ; ;1 2/ 2E E = 5 23 20.2G E= ; 12 13 20.5G G E= = ; 12 0.25ν =  
 

 



 
Table 8  

0θ  Hyperbolic paraboloid shell   ( Rx=-Ry) / yh R
C-C-C-C -1/300 -1/500 -1/750 -1/1000 0 
15 71.9689 64.8192 54.5169 44.2070 24.1361 
30 64.5320 51.6167 38.0747 31.7184 20.5975 
45 49.7410 33.8265 26.9788 24.1255 19.8621 
S-S-S-S (SS2) 
15 54.9783 46.3938 43.3198 41.4780 12.6750 
30 52.0557 41.0520 35.1199 27.7013 12.0742 
45 47.1527 30.0847 22.0836 18.4693 12.3423 
Corner supported 
15 8.7098 6.9390 5.6789 5.0255 3.8113 
30 8.5902 7.0953 6.0674 5.5420 4.5297 
45 8.4482 7.1207 6.3417 5.9861 5.4336 
Hypar shell (c/a) 
C-C-C-C 0.20 0.15 0.1 0.05 0 
15 121.1150 102.7400 84.4587 53.2526 24.1361 
30 116.0076 104.0245 91.1993 63.6122 20.5975 
45 118.9551 101.4451 85.6254 69.5167 19.8621 
S-S-S-S (SS2) 
15 93.4221 78.0224 63.0787 40.4870 12.6750 
30 92.6757 77.4935 59.1837 42.8307 12.0742 
45 95.5267 80.3689 67.0237 43.4276 12.3423 
Corner supported 
15 12.0714 12.1429 12.0506 11.4118 3.8113 
30 12.1957 12.0471 11.8974 11.6903 4.5297 
45 10.6905 10.3020 9.9852 9.7759 5.4336 
Conoid shell (hl/Hh) , a/Hh=5 
C-C-C-C 0.20 0.15 0.10 0.05 0 
15 65.6122 63.7285 61.8627 60.0667 58.3857 
30 71.3619 68.1776 65.3564 62.5348 60.1323 
45 81.3614 77.6831 74.0710 70.6078 67.3693 
S-S-S-S (SS2) 
15 52.7427 52.3790 51.0267 49.5872 48.1619 
30 59.0493 57.0236 54.8623 52.7309 50.7304 
45 68.1662 65.3149 62.3482 59.4125 56.6474 
Corner supported 
15 16.9478 15.3246 13.2651 11.1673 9.6770 
30 18.6549 16.7780 14.4917 12.2324 10.6670 
45 21.0430 19.3262 16.8132 13.9950 11.9568 
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