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ABSTRACT 2. ADAPTIVE ALGORITHM WITH SATURATION
ERROR NONLINEARITY

The estimate of aM x 1 unknown vectow® by using row regressor
uj, of lengthM and output sampled(i) that is given as

This paper introduces a new approach for the transient sisabyf
adaptive filter with error saturation nonlinearity in prase of im-
pulsive noise. The recursive expressions for mean-squevia-d
tion(MSD) and excess mean-square error(EMSE) are deriased
on weighted energy conservation arguments. The approdehds

to new performance results without restricting the inpgfression o . . o .
data to be white. Where\(i) is represents the impulsive noise instead of Gaussian.

Out of many adaptive algorithms proposed in literature 110 the
yvel! known LMS algorithm is analyzed. Its weight update qrma
1. INTRODUCTION is given by

d(i) = ujw® + (i) @

It is known that when data is contaminated with non-Gaussian v, =Wi71+ﬂe(i)ui-r
noise, the linear systems provides poor performance. Irymphays-

ical environment the additive noise is modeled as impulaivé is | this paper we focus on a slightly different class of altjori by
characterized by long-tailed non-Gaussian distributidihe per-  jntroducing an error nonlinearity into the feedback errignal so
formance of the system is evaluated under the assumptioththa  that the weight update equation can be written as

Gaussian noise is severally degraded by the non-Gaussiaaus-
sian mixture [1] noise due to deviation from normality in tiads
[2,3]. The effects of saturation type of non-linearity o tleast-
mean square adaptation for Gaussian inputs and Gaussia@ noi . . o . .
have been studied [4,5]. Recent research focus is to denelap-  Werewi is the estimate o at timei andp is the step size

tive algorithm that are robust to impulsive noise or outfiegsent in . . R .

the training data. Number of algorithms have been propa3&s-] e(i) =d(i) —uiwi_1 = uiw’ —ujwi_1+ V(i) 3)
to reduces the effects of impulsive noise. This class ofrilyos

is difficult to analyze and therefore it is not uncommon tooreso ~ and

different methods and assumptions. Prof J. Bershad in binte y

paper [9] has showed that the error saturation nonlinearitiMS _f 20214, [T y

provides good performance in presence of impulsive noisew H f) _/0 exp—u”/205]du= \/;erf L/QOJ )
ever he has not given the recursion relation for correlatpdt data.

The least-mean square(LMS) algorithm is popular adaplive a whereds is a parameter that defines the degree of saturation.
gorithm because of its simplicity [10], [11]. Many LMS typkye- If f(e) represents the cost function, then its gradient is defined
rithms have been suggested and analyzed in literature isldlss  as
of least-mean square algorithm with error saturation maarity is

wi=wi_1+uyf fle(i)] i>0 @)

of particular importance. The general way of convergencdyais oaf _df oe
of any type of adaptive algorithms using weight-energytrefais ow de Ow
dealt in [12]. Further in some literature the error nonlirigaanal- af

ysis [13,14] and data nonlinearity analysis [15] are havenbeade (—u)

weighted-energy conservation method. The theory deafi]ipfo-

vides the idea of the subsequent analysis of Gaussian mizase. . af -

It also suggests how it can applied to each component sepatat  |f We choose the cost functiofie) = € then gz = 2eis linear, oth-

obtain recursive relation for the nonlinear LMS. erwise‘;—f3 is a non-linear function oé. In this approach nonlinear
In this paper we use both the ideas to develop a new genetalize; (e) and is so chosen that %{ is also nonlinear. e..

method to obtain the transient analysis of saturation neality €

LMS in presence of Gaussian contaminated impulsive noise. W i

have derived the performance equations by assuming thatphée fle)= / (ﬁ) de

data is Gaussian uncorrelated. This idea can also extendiw t de

case of correlated input regressor data. Finally it shovat the

theoretical performance curves have excellent agreemihtthhe  In this saturation non-linearity LMS case we have chosensGian

corresponding simulation results. nonlinearity on error.

~ de



2.1 Model for Impulsive Noise

The transient analysis of adaptive filters that are avadlabllit-
erature is for white Gaussian noise case. But in real enmignt
impulsive noise is encountered. The impulsive noise is reatas
a two component of the Gaussian mixture [1, 3] which is given b

No(i) = Ng(i) + Nim(i) = ng(i) +b(i)nw(i) ©)

whereng(i) andny(i) are independent zero mean Gaussian noise

with variancesog and o, respectively;b(i) is a switch sequence

The variance relation can be obtained from the energy celdti3)
by replacing a posteriori error by its equivalent expressio

Wi 13 = [[¥i—1]1§ — 205 (i) f [ ()] + 2wl | F2(e(i)]

Taking expectation on both sides we get the same equatior B3]i
which is given as:

E[|Iwi8] = E[IIWi—1/|3] — 21E[EZ (1) fe(i)]

+ U2E[[[wi | F2[e(i)]] (14)

of ones and zeros, which is modeled as an iid Bernoulli randonkvaluation of 2nd and 3rd terms on RHS of (14)is difficult as it

process with occurrence probabil®y(b(i) = 1) = pr andP; (b(i) =

contains the nonlinearity term. To evaluate the transiealysis

0) = 1— pr. The variance ofjy(i) is chosen to be very large than we make the same assumption taken in [13].

that of ng(i) so that wherb(i) = 1, a large impulse is experienced

in no(i). The corresponding pdf afy(i) in (5) is given by

1-pr - Pr —x
fny (X) = exp| =— exp| — 6
no (X) V2noy xD(ZO&) * V2nos X 202 (©)

where 0 = 0 + 03 andE[n3(i)] = g + prog. It is noted that
whenp, =0 or 1,ne(i)] is a zero-mean Gaussian variate.

3. TRANSIENT ANALYSIS

We are interested in studying the time-evolution of the aracies
Ele(i)|? andE||W;||* where

W =w°’ —Wwj

The steady-state values of the variances known as meanesgua
ror and mean-square deviation performance of the filterrdieioto
study the time evaluation of above variances, we introd@i2¢ the
weighteda priori anda posteriorierror defined as

(i) = uiZwi_y @)
whereZ is a symmetric positive definite weighting matrix. It will

be seen that the different choice foallows us to evaluate different
performance. FoE = | we define

and  e5(i) = uiZW

€alil) = €h(i) =wiwi_1,  ep(i) = €h(i) = wiWi 8
Subtractingw® from both sides of (2), we get

Wi = Wi_1— ufei)]u 9
Using the definition of a priori error in (3), we get

e(i) = ea(i) + V(i) (10)

Relation between various error terre3(i), e%(i) ande(i) is ob-
tained by premultiplying both sides of (9) hy>
e5(i) = (i) — pf [e(i)]|wil|§

3.1 Weight-Energy Relation

Elimination of the nonlinearityf [e(i)] from (9) by using (11) we
obtained

(11)

u; (12)

Taking weighted energy on both sides of (12), we get

. 2
IO ()| ()]
Wi + 20 = g+

i |12 |2

(13)

e The noise sequena&i) is iid and independence o
e For any constant matrix and for alli, e (i) andeZ (i) are jointly
Gaussian.
e The adaptive filter is long enough such that the weighted norm
of input regressor and the square of error nonlinearity i.e.
f2[e(i)] are uncorrelated.
Price’s theorem [16, 17]plays an important rule to analyme2nd
term on RHS of equation(14) which is given as
E[xyi
Exfly+27] = == E[yfly+2Z
(xfly+7] E yfly+2]

where x andy be jointly Gaussian random variables that are in-
dependent from the third random varialde Here the third term
is given as independent of x and y which are jointly Gaussian.
In [9], [13] the noise is considered as simply Gaussian ade-in
pendent of the errore, (i) andel(i). But in this paper we consider
the noise is impulsive and also assume that this impulsiiseradso
independent of errors. So by using the the Price’s theoresraan
suming that the impulsive noise is independent of errors etelege
same general equation [17, [13]] which is given as

E[e5() f[e()]] = E[€5(i)e(i) he[E[€(1)]

where the general expression fgt is given as
Os

WE{F’UE@Y?%”

Now we can evaluate the value ln§ using the pdfpy(v) in (6) as

(15)
he =

(1-pr)os I PrOs
VEB)]+02+03] \/E[e(i)]+02+0F]

In similar way we can evaluate the third term of (14) by takiogg
filter assumption for which the weighted norm of input datd e
squared error nonlinearity are uncorrelated as in [13]. ligare the
expression fohy = E[f2[e(i)]] is evaluated by assuming the noise
is impulsive and whose pdf is given in (6). The expressiohpfs
givenin (17).

hg = (16)

o 02 +E[€(i)]
hy = (1-pr)odsin ! ('%%]"‘M)

2 i1
-+ prog sin (E[%(i)]+o§+o§ 17)

3.2 Weighted-Energy Recursion Relation

Employing the same assumption as in [13] and assuming the se-
guenceu; is zero-mean iid, and has covariance matRx the
weighted-energy recursion relation is given as

E[||Will§] = E[[[Wi-1]] — 2HhGE(|[Wi—1/3g]

+ HPE (| ui [y (18)



4. RECURSION EQUATIONS

The learning curve of the filters refers to the time-evolutiof
the variancesE[€4(i)] and E[||%;||?]. the steady-state values are
called as excess-mean square error(EMSE) and mean-scmase d
ation(MSD) respectivelly. Under independent assumpti@ncan
write the variancé€[€?(i)] as

E[?(i)] = E[| %y &

This suggests that the learning curve can be evaluated bpuem
ing the weight-energy relation (18) for eachnd by choosing the
weight parameteX = R for EMSE andz = I for MSD respectively.
Here we develop the recursive relation for EMSE and MSD fost f
white input data and then extend to correlated input data.

4.1 Caseof White Regressor Data

In case of white input regressor data, the covariance m#rix
021, so thatE[€3(i)] = 0ZE[||[W(i_1)||?]. Therefore the (18) can be
solved as
E[|1Wi 8] = E[|[Wi-1/] — 2uhc oFE[||%i-1] 5]
+ KPE[[|uil E]hy (19)

Thus, settingz = I in the above equation for MSD recursion equa-
tion, we get

E[|IWil|%] = E[|[Wi1[|?] — 2uhc 07E[||Wi—1]|?]

+ 2E[ i |2Jhy (20)
Substitutingr (i) = E[||Wi||3], (20) written as
n(i) =n(i-1) - 2uheaZn(i— 1) + u*Ma]hy (21)

where the nonlinear parametat andhy are given as below:

he — (1-pr)os
G =
\/ogn(i—1)+052+o§
+ Pros 22)
\/ogn(i—1)+052+o§
2. ~2p (i
o 9 . 1 o5 +ogn(i—1)
hy = (1—pr)og sin (Ugﬂ(i1)+052+05}
2. ~2p(i
] os+oin(i—1)
sin 23
Fpross (a&n(i1>+o§+o§1 )

Equation (21) shows recursive equation for MSD in case otavhi
input regressor data. This expression is similar to the (Z€p]
except only one extra term in later. In our analysis we hasaagd
that for long filter the weighted norm of input dafa;|2 and the
error nonlinearity squard [€(i)] are uncorrelated. Therefore the
extra term in (26) of [9] is not appeared in (21). In additidst
extra term can be neglected for small step size.

In the same way we can obtain the recursion equation for EMSE!

by simply choosing = R in (18) where the time evolution EMSE
ati can be written ag (i) = E[[|Wi[|% .

(i) =2(i—1)—2uhc o3¢ (i — 1) + u*Maghy (24)
The nonlinearity parametels; andhy in EMSE of (24) are as
(1-pr)0s
Z(i—1)+o§+a§

he =

PrOs

2(i—1)+ 02 +02

+

(25)

a0 4

a0l

AN,
Why T

Steady-state MSD [dB]

i
800

i i i i i
1000 1200 1400 1600 1800

Sample data, i

2000

Figure 1: Theoretical (black) and simulated (red) mearasgde-
viation (MSD) curve forp; = 0.0 (no impulsive noise) 0.1, 0.5, and
1

)

4.2 Caseof Correlated Regressor Data

The results (18) allows us to evaluate the time evolutionhef t
variances without the whiteness assumption on the inpueseg
sion data i.e. for general matricd. The main idea is to take
the advantage of the free choice of weighted maifrixX we choose

> =LR,..RM-1 thenhg andhy remain the same, so that these
parameters are independent of choice of weighted matrix

2 .
_ 2ain-1 og+{(i-1)
hy = (1—pr)ogsin (MM

+progsin? (Z(_0§+Z(i_l) (26)

i—1)+ 02+ 0Z]

5. RESULTS

All simulations are carried out using regressors with shifariance
structure to cope with realistic scenario. Therefore tlggassor are
filled up as

w = [u(i),u(i—1),...,ui —M+2)]" (27)

The recursive equations are derived by assuming that irgtatate
uncorrelated, so that the Monte Carlo simulation techniguesed

to get simulated value of MSE and EMSE in presence of differ-
ent percentage of impulsive noise. The desired data areafede
according to the model given in (1), and the unknown veet6r

is set to[1,1,...,1]T/v/M. Here the back ground noise is Gaus-
sian contaminated impulsive type which is defined in (5). baek
ground noise is Gaussian with variarm'é and the impulsive noise

is also Gaussian but it occur with some probability havinghhi
varianceov%. The performance of the saturation nonlinearity
algorithm in presence of impulsive noise with different qurt-

age is depicted in Figs. 1 and 2. The parameters are chosen as
=0.05,0% = 1,08 = 0.01,0¢ = 105,03 = 10°0Z which are
nearly same as taken in [9]. These figures exhibit excellettim
between theoretical and simulation results.

Further we verify that the theoretical and simulation réesul
when the impulsive noise whose variance is much much more tha
the background noise. The parameters are takgen-a9.05, 03
1,0%; =001 0% = 103,03 = 10°03. The performance curves
are depicted in Figs. 3 and 4. Both the results also showslerte
match.

6. CONCLUSION

In this paper we have used energy-weighted conservatiameegts
to study the performance of saturation nonlinearity LMShwin-
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Figure 2: Theoretical (black) and simulated (red) excessim

square error (EMSE) curve fqo, = 0.0(no impulsive noise) 0.1,
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Figure 3: Theoretical (black) and simulated (red) mearasgde-
viation (MSD) curve forp; = 0.0(no impulsive noise) 0.1, 0.5, and
1.0
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Figure 4: Theoretical (black) and simulated (red) excessim

square error (EMSE) curve fqo, = 0.0(no impulsive noise) 0.1,
0.5,and 1.0

pulsive noise. The recursion equations for MSD and EMSE are

derived in presence of impulsive noise. The simulated teudve
good agreement with theoretical counter part. We can extieisd
approach to other family of error nonlinearities like LMRg8 error
etc. Finally this approach can also be applied to general Ganssi

mixture type of noise which is more frequently used in RADAR
signal processing.
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