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ABSTRACT

This paper introduces a new approach for the transient analysis of
adaptive filter with error saturation nonlinearity in presence of im-
pulsive noise. The recursive expressions for mean-square devia-
tion(MSD) and excess mean-square error(EMSE) are derived based
on weighted energy conservation arguments. The approach isleads
to new performance results without restricting the input regression
data to be white.

1. INTRODUCTION

It is known that when data is contaminated with non-Gaussian
noise, the linear systems provides poor performance. In many phys-
ical environment the additive noise is modeled as impulsiveand is
characterized by long-tailed non-Gaussian distribution.The per-
formance of the system is evaluated under the assumption that the
Gaussian noise is severally degraded by the non-Gaussian orGaus-
sian mixture [1] noise due to deviation from normality in thetails
[2, 3]. The effects of saturation type of non-linearity on the least-
mean square adaptation for Gaussian inputs and Gaussian noise
have been studied [4, 5]. Recent research focus is to developadap-
tive algorithm that are robust to impulsive noise or outlierpresent in
the training data. Number of algorithms have been proposed [3,6–8]
to reduces the effects of impulsive noise. This class of algorithms
is difficult to analyze and therefore it is not uncommon to resort to
different methods and assumptions. Prof J. Bershad in his recent
paper [9] has showed that the error saturation nonlinearities LMS
provides good performance in presence of impulsive noise. How
ever he has not given the recursion relation for correlated input data.

The least-mean square(LMS) algorithm is popular adaptive al-
gorithm because of its simplicity [10], [11]. Many LMS type algo-
rithms have been suggested and analyzed in literature is theclass
of least-mean square algorithm with error saturation nonlinearity is
of particular importance. The general way of convergence analysis
of any type of adaptive algorithms using weight-energy relation is
dealt in [12]. Further in some literature the error nonlinearity anal-
ysis [13,14] and data nonlinearity analysis [15] are have been made
weighted-energy conservation method. The theory dealt in [9] pro-
vides the idea of the subsequent analysis of Gaussian mixture case.
It also suggests how it can applied to each component separately to
obtain recursive relation for the nonlinear LMS.

In this paper we use both the ideas to develop a new generalized
method to obtain the transient analysis of saturation nonlinearity
LMS in presence of Gaussian contaminated impulsive noise. We
have derived the performance equations by assuming that theinput
data is Gaussian uncorrelated. This idea can also extended to the
case of correlated input regressor data. Finally it shown that the
theoretical performance curves have excellent agreement with the
corresponding simulation results.

2. ADAPTIVE ALGORITHM WITH SATURATION
ERROR NONLINEARITY

The estimate of anM×1 unknown vectorw◦ by using row regressor
ui , of lengthM and output samplesd(i) that is given as

d(i) = uiw
◦ +v(i) (1)

Wherev(i) is represents the impulsive noise instead of Gaussian.
Out of many adaptive algorithms proposed in literature [10,11] the
well known LMS algorithm is analyzed. Its weight update equation
is given by

wi = wi−1 + µe(i)uT
i

In this paper we focus on a slightly different class of algorithm by
introducing an error nonlinearity into the feedback error signal so
that the weight update equation can be written as

wi = wi−1 + µu
T
i f [e(i)] i ≥ 0 (2)

wherewi is the estimate ofw at timei andµ is the step size

e(i) = d(i)−uiwi−1 = uiw
◦−uiwi−1 +v(i) (3)

and

f (y) =
∫ y

0
exp[−u2/2σ2
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2
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whereσs is a parameter that defines the degree of saturation.
If f (e) represents the cost function, then its gradient is defined

as

∂ f
∂w

=
∂ f
∂e

· ∂e
∂w

=
∂ f
∂e

· (−u)

If we choose the cost functionf (e) = e2 then ∂ f
∂e = 2e is linear, oth-

erwise ∂ f
∂e is a non-linear function ofe. In this approach nonlinear

f (e) and is so chosen that of∂ f
∂e is also nonlineari. e..

f (e) =

∫

(

∂ f
∂e

)

de

In this saturation non-linearity LMS case we have chosen Gaussian
nonlinearity on error.



2.1 Model for Impulsive Noise

The transient analysis of adaptive filters that are available in lit-
erature is for white Gaussian noise case. But in real environment
impulsive noise is encountered. The impulsive noise is modeled as
a two component of the Gaussian mixture [1,3] which is given by

no(i) = ng(i)+nim(i) = ng(i)+b(i)nw(i) (5)

whereng(i) andnw(i) are independent zero mean Gaussian noise
with variancesσ2

g andσ2
w, respectively;b(i) is a switch sequence

of ones and zeros, which is modeled as an iid Bernoulli random
process with occurrence probabilityPr(b(i) = 1) = pr andPr(b(i) =
0) = 1− pr . The variance ofηw(i) is chosen to be very large than
that of ng(i) so that whenb(i) = 1, a large impulse is experienced
in no(i). The corresponding pdf ofno(i) in (5) is given by

fno(x) =
1− pr√

2πσg
exp

(

−x2

2σ2
g

)

+
pr√

2πσΣ
exp

(

−x2

2σ2
Σ

)

(6)

whereσ2
Σ = σ2

g + σ2
w and E[n2

o(i)] = σ2
g + prσ2

w. It is noted that
whenpr = 0 or 1,no(i)] is a zero-mean Gaussian variate.

3. TRANSIENT ANALYSIS

We are interested in studying the time-evolution of the variances
E|e(i)|2 andE‖w̃i‖2 where

w̃ = w
◦−wi

The steady-state values of the variances known as mean-square er-
ror and mean-square deviation performance of the filter. In order to
study the time evaluation of above variances, we introduce [12] the
weighteda priori anda posteriorierror defined as

eΣ
a(i) = uiΣw̃i−1 and eΣ

p(i) = uiΣw̃i (7)

whereΣ is a symmetric positive definite weighting matrix. It will
be seen that the different choice forΣ allows us to evaluate different
performance. ForΣ = I we define

ea(i) = eI
a(i) = uiw̃i−1, ep(i) = eI

p(i) = uiw̃i (8)

Subtractingw◦ from both sides of (2), we get

w̃i = w̃i−1−µ f [e(i)]ui (9)

Using the definition of a priori error in (3), we get

e(i) = ea(i)+v(i) (10)

Relation between various error termseΣ
a(i), eΣ

p(i) and e(i) is ob-
tained by premultiplying both sides of (9) byuiΣ

eΣ
p(i) = eΣ

a(i)−µ f [e(i)]‖ui‖2
Σ (11)

3.1 Weight-Energy Relation

Elimination of the nonlinearityf [e(i)] from (9) by using (11) we
obtained

w̃i = w̃i−1 +
eΣ

p(i)−eΣ
a(i)

‖ui‖2 u
T
i (12)

Taking weighted energy on both sides of (12), we get

‖w̃i‖2
Σ +

|eΣ
a(i)|2
‖ui‖2

Σ
= ‖w̃i−1‖2

Σ +
|eΣ

p(i)|2

‖ui‖2
Σ

(13)

The variance relation can be obtained from the energy relation (13)
by replacing a posteriori error by its equivalent expression.

‖w̃i‖2
Σ = ‖w̃i−1‖2

Σ −2µeΣ
a(i) f [e(i)]+ µ2‖ui‖2

Σ f 2[e(i)]

Taking expectation on both sides we get the same equation as in [13]
which is given as:

E[‖w̃i‖2
Σ] = E[‖w̃i−1‖2

Σ]−2µE[eΣ
a(i) f [e(i)]]

+ µ2E[‖ui‖2
Σ f 2[e(i)]] (14)

Evaluation of 2nd and 3rd terms on RHS of (14)is difficult as it
contains the nonlinearity term. To evaluate the transient analysis
we make the same assumption taken in [13].
• The noise sequencev(i) is iid and independence ofui

• For any constant matrixΣ and for alli, ea(i) andeΣ
a(i) are jointly

Gaussian.
• The adaptive filter is long enough such that the weighted norm

of input regressor and the square of error nonlinearity i.e.
f 2[e(i)] are uncorrelated.

Price’s theorem [16, 17]plays an important rule to analyze the 2nd
term on RHS of equation(14) which is given as

E[x f [y+z]] =
E[xy]

E[y2]
E[y f [y+z]]

where x and y be jointly Gaussian random variables that are in-
dependent from the third random variablez. Here the third term
is given as independent of x and y which are jointly Gaussian.
In [9], [13] the noise is considered as simply Gaussian and inde-
pendent of the errorsea(i) andeΣ

a(i). But in this paper we consider
the noise is impulsive and also assume that this impulsive noise also
independent of errors. So by using the the Price’s theorem and as-
suming that the impulsive noise is independent of errors we get the
same general equation [17, [13]] which is given as

E[eΣ
a(i) f [e(i)]] = E[eΣ

a(i)e(i)]hG[E[e2
a(i)] (15)

where the general expression forhG is given as

hG =
σs

√

E[e2
a(i)]+σ2

s

E

[

exp

[

− v2(i)

2(E[e2
a(i)]+σ2

s )

]]

Now we can evaluate the value ofhG using the pdfpv(v) in (6) as

hG =
(1− pr )σs

√

E[e2
a(i)]+σ2

s +σ2
g ]

+
prσs

√

E[e2
a(i)]+σ2

s +σ2
Σ ]

(16)

In similar way we can evaluate the third term of (14) by takinglong
filter assumption for which the weighted norm of input data and the
squared error nonlinearity are uncorrelated as in [13]. Buthere the
expression forhU = E[ f 2[e(i)]] is evaluated by assuming the noise
is impulsive and whose pdf is given in (6). The expression ofhU is
given in (17).

hU = (1− pr )σ2
s sin−1

(

σ2
g +E[e2

a(i)]

E[e2
a(i)]+σ2

s +σ2
g ]

)

+ prσ2
s sin−1

(

σ2
Σ +E[e2

a(i)]

E[e2
a(i)]+σ2

s +σ2
Σ

)

(17)

3.2 Weighted-Energy Recursion Relation

Employing the same assumption as in [13] and assuming the se-
quenceui is zero-mean iid, and has covariance matrixR, the
weighted-energy recursion relation is given as

E[‖w̃i‖2
Σ] = E[‖w̃i−1‖2

Σ]−2µhGE[‖w̃i−1‖2
ΣR]

+ µ2E[‖ui‖2
Σ]hU (18)



4. RECURSION EQUATIONS

The learning curve of the filters refers to the time-evolution of
the variancesE[e2

a(i)] and E[‖w̃i‖2]. the steady-state values are
called as excess-mean square error(EMSE) and mean-square devi-
ation(MSD) respectivelly. Under independent assumption we can
write the varianceE[e2(i)] as

E[e2(i)] = E[‖w̃(i−1)‖2
R

]

This suggests that the learning curve can be evaluated by comput-
ing the weight-energy relation (18) for eachi and by choosing the
weight parameterΣ =R for EMSE andΣ = I for MSD respectively.
Here we develop the recursive relation for EMSE and MSD first for
white input data and then extend to correlated input data.

4.1 Case of White Regressor Data

In case of white input regressor data, the covariance matrixR =
σ2

uI, so thatE[e2
a(i)] = σ2

uE[‖w̃(i−1)‖2]. Therefore the (18) can be
solved as

E[‖w̃i‖2
Σ] = E[‖w̃i−1‖2

Σ]−2µhGσ2
uE[‖w̃i−1‖2

Σ]

+ µ2E[‖ui‖2
Σ]hU (19)

Thus, settingΣ = I in the above equation for MSD recursion equa-
tion, we get

E[‖w̃i‖2] = E[‖w̃i−1‖2]−2µhGσ2
uE[‖w̃i−1‖2]

+ µ2E[‖ui‖2]hU (20)

Substitutingη(i) = E[‖w̃i‖2], (20) written as

η(i) = η(i−1)−2µhGσ2
uη(i−1)+ µ2Mσ2

u ]hU (21)

where the nonlinear parameterhG andhU are given as below:

hG =
(1− pr )σs

√

σ2
uη(i−1)+σ2

s +σ2
g

+
prσs

√

σ2
uη(i−1)+σ2

s +σ2
Σ

(22)

hU = (1− pr )σ2
s sin−1

(

σ2
g +σ2

u η(i−1)

σ2
uη(i−1)+σ2

s +σ2
g ]

)

+ prσ2
s sin−1

(

σ2
Σ +σ2

uη(i−1)

σ2
uη(i−1)+σ2

s +σ2
Σ ]

)

(23)

Equation (21) shows recursive equation for MSD in case of white
input regressor data. This expression is similar to the (26)of [9]
except only one extra term in later. In our analysis we have assumed
that for long filter the weighted norm of input data‖ui‖2

Σ and the
error nonlinearity squaref [e2(i)] are uncorrelated. Therefore the
extra term in (26) of [9] is not appeared in (21). In addition this
extra term can be neglected for small step size.

In the same way we can obtain the recursion equation for EMSE
by simply choosingΣ = R in (18) where the time evolution EMSE
at i can be written asζ (i) = E[‖w̃i‖2

R
].

ζ (i) = ζ (i−1)−2µhGσ2
uζ (i−1)+ µ2Mσ4

uhU (24)

The nonlinearity parametershG andhU in EMSE of (24) are as

hG =
(1− pr )σs

√

ζ (i−1)+σ2
s +σ2

g

+
prσs

√

ζ (i−1)+σ2
s +σ2

Σ

(25)
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Figure 1: Theoretical (black) and simulated (red) mean-square de-
viation (MSD) curve forpr = 0.0 (no impulsive noise) 0.1, 0.5, and
1.0

hU = (1− pr )σ2
s sin−1

(

σ2
g +ζ (i−1)

ζ (i−1)+σ2
s +σ2
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)

+ pr σ2
s sin−1

(

σ2
Σ +ζ (i−1)
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(26)

4.2 Case of Correlated Regressor Data

The results (18) allows us to evaluate the time evolution of the
variances without the whiteness assumption on the input regres-
sion data i.e. for general matricesR. The main idea is to take
the advantage of the free choice of weighted matrixΣ. If we choose
Σ = I,R, ...RM−1, thenhG andhU remain the same, so that these
parameters are independent of choice of weighted matrixΣ.

5. RESULTS

All simulations are carried out using regressors with shiftinvariance
structure to cope with realistic scenario. Therefore the regressor are
filled up as

ui = [u(i),u(i−1), . . . ,u(i−M +1)]T (27)

The recursive equations are derived by assuming that input data are
uncorrelated, so that the Monte Carlo simulation techniqueis used
to get simulated value of MSE and EMSE in presence of differ-
ent percentage of impulsive noise. The desired data are generated
according to the model given in (1), and the unknown vectorw

◦

is set to[1,1, . . . ,1]T/
√

M. Here the back ground noise is Gaus-
sian contaminated impulsive type which is defined in (5). Theback
ground noise is Gaussian with varianceσ2

g and the impulsive noise
is also Gaussian but it occur with some probability having high
varianceσ2

w. The performance of the saturation nonlinearity
algorithm in presence of impulsive noise with different percent-
age is depicted in Figs. 1 and 2. The parameters are chosen as
µ = 0.05,σ2

u = 1,σ2
sat = 0.01,σ2

g = 10−6,σ2
w = 103σ2

g which are
nearly same as taken in [9]. These figures exhibit excellent match
between theoretical and simulation results.

Further we verify that the theoretical and simulation results
when the impulsive noise whose variance is much much more than
the background noise. The parameters are taken asµ = 0.05,σ2

u =

1,σ2
sat = 0.01,σ2

g = 10−3,σ2
w = 104σ2

g . The performance curves
are depicted in Figs. 3 and 4. Both the results also shows excellent
match.

6. CONCLUSION

In this paper we have used energy-weighted conservation arguments
to study the performance of saturation nonlinearity LMS with im-
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Figure 3: Theoretical (black) and simulated (red) mean-square de-
viation (MSD) curve forpr = 0.0(no impulsive noise) 0.1, 0.5, and
1.0
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Figure 4: Theoretical (black) and simulated (red) excess-mean-
square error (EMSE) curve forpr = 0.0(no impulsive noise) 0.1,
0.5, and 1.0

pulsive noise. The recursion equations for MSD and EMSE are
derived in presence of impulsive noise. The simulated results have
good agreement with theoretical counter part. We can extendthis
approach to other family of error nonlinearities like LMF, Sign error
etc.. Finally this approach can also be applied to general Gaussian
mixture type of noise which is more frequently used in RADAR
signal processing.
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