
Intelligent Neuro-Controller for Navigation of Mobile Robot 
 

Mukesh Kumar Singh 
Department of Mechanical Engineering, 

Government Engineering College Bilaspur, 
(Chhattisgarh)-495009, India, +919861260064 

Mukesh3003@yahoo.co.in 

Dayal R. Parhi 
Department of Mechanical Engineering, 

National Institute of Technology Rourkela, (Orissa)-
769008,  India, +916612464509 

dayalparhi@yahoo.com 
 

ABSTRACT 
This paper deals with the reactive control of an autonomous robot 
which move safely in a crowded real world unknown environment 
and to reach specified target by avoiding static as well as dynamic 
obstacle. The inputs to the proposed neurocontroller  consist of 
left, right, and front obstacle distance to its locations and target 
angle between a robot and a specified target being acquired by an 
array of sensors. A four layer neural networks is used to design 
and develop the neurocontroller to solve the path and time 
optimization problem of mobile robots which deals the with 
cognitive tasks such as learning, adaptation, generalization and 
optimization. Back propagation method is used to trained the 
network. This paper analyzes the kinematical modeling of mobile 
robots as well as the design of control systems for the autonomous 
motion of the robot. The training of the nets and the control 
performances analysis have been done in a real experimental 
setup. The simulation results are compared with experimental 
results which are satisfactory and shows a very good agreement.  

Categories and Subject Descriptors 
I.2.9 Robotics: Autonomous vehicles, Kinematics. F.1.1 Models of 
Computation: Self-modifying machines (e.g., neural networks) 

General Terms: Design. 

Keywords: Evolutionary robotics, Artificial neural network, 
Mobile robot, Behavioral robotics. 

1. INTRODUCTION 
One of the most important issues in the design and development 
of intelligent mobile system is the navigation problem. This 
consists of the ability of a mobile robot to plan and execute 
collision free motions within its environment. However, this 
environment may be imprecise, vast, dynamical and either 
partially or non-structured. Robots must be able to understand the 
structure of this environment[5, 9, 11, 12, 15]. To reach their 
targets without collisions, the robots must be endowed with 
perception, data processing, recognition, learning, reasoning, 
interpreting, and decision-making and action capacities.  

Service robotics today requires synthesizing robust automatic 
systems able to cope with a complex and dynamic environment 
[4]. To demonstrate this kind of autonomy Muniz et al. [8] have 
introduced a neural controller for a mobile robot that learns both 
forward and inverse odometry of a differential drive robot through 
an unsupervised learning by doing cycle. They introduce an 
obstacle avoidance module that is integrated into the neural 
controller. However, generally, the evolved neural controllers 
could be fragile in un experienced environments, especially in 
real worlds, because the evolutionary optimization processes 
would be executed in idealized simulators. This is known as the 
gap problem between the simulated and real worlds. To overcome 
this, Kondo [7] has focused on evolving an on-line learning 
ability instead of weight parameters in a simulated environment. 
Based on this, a neuromodulatory neural network model was 
proposed by them and it utilized as a mobile robot controller. 
Corradini et al. [2] have used a neural networks approach to the 
solution of the tracking problem for mobile robots. Recz et al. 
[14] have presented a neural network based approach to a mobile 
robot localization in front of a certain local object. Yang et al. 
[16] have proposed a biologically inspired neural network 
approach to real-time collision-free motion planning of mobile 
robots or robot manipulators in a non stationary environment. 
Braganza et al. [1] have described a controller for continuum 
robots, which utilizes a neural network feedforward component to 
compensate for dynamic uncertainties. Research in autonomous 
multi-robot systems often focuses on mechanisms to enhance the 
efficiency of the group through some form of cooperation among 
the individual agents. Moreover, the versatility of a multi-robot 
system can provide the heterogeneity of structures and functions 
required to undertake different missions in unknown 
environmental conditions [9, 11-13]. 

This paper proposed a neural network based approach to the 
solution of the path and time optimization problem for mobile 
robots. A biologically inspired neural network is used to real-time 
collision-free motion planning of mobile robots in an unknown 
environment. Four layer perceptron neural network has been used 
to design the controller the first layer is used to input layer which 
directly read from the arrays of sensor of the robot network 
consisting with two hidden layer which adjusted the weight of 
neuron and a output layer which provide hading angle of the 
robot. Back propagation method is used to minimize the error and 
optimize the path and time of mobile robot to reach the target.  

This paper organized into five sections following the introduction, 
the kinematics behavior of mobile robot is described in section 2. 
Analysis of navigation method using neural network architecture 
explained in section 3. The simulation results are discussed and to 
demonstrate the superiority of the proposed methodology 
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comparison has been made with other methods [12]. In section 4. 
Finally conclusions are discussed in section 5. 

2. KINAMATICS OF MOBILE ROBOT 
The kinematics approaches to controlling mobile robots are 

posture stabilization. Posture stabilization is to stabilize the robot 
to a reference point. The kinematics analysis of the khepra-III 
mobile robot is analyzed in this section. The kinematics model of 
mobile robots has been shown in Figure 1.  

It consists of a vehicle chassis with two driving wheels mounted 
on the same axis and a front point sliding support. The two 
driving wheels are independently driven by two actuators to 
achieve the motion and orientation. Both wheels have the same 
diameter denoted by ‘2r’. The two driving wheels are separated 
by distance ‘W’. The center of gravity (COG) of the mobile robot 
is located at point ‘C’. The point ‘P’ is located in the intersection 
of a straight line passing through the middle of the vehicle and a 
line passing through the axis of the two wheels. The distance 
between points P and C is ‘d’. A motion controller based on 
neural network technique is proposed for navigation of the mobile 
robot. The main component in the motion controller is the low 
level inverse neural controller, which controls the dynamics of the 
mobile robot. The kinematics of the differential drive mobile 
robot is based on the assumption of pure rolling and there is no 
slip between the wheel and surface. 
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Where v is linear and ω is angular velocity of the vehicle. Suffix 
r, l and t stand for right, left wheel and tangential (with respect to 
its center of gravity point ‘C’ measured in a right wheel) 
respectively.  

The position of the robot in the global coordinate frame [O X Y] 
is represented by the vector notation as,  

[ ]  q T
pc θΥΧ=                                        (4) 

Where Xc and Yp are the coordinates of the point P in the global 
coordinate frame [Figure 1]. The variable θ is the orientation of 
the local coordination of the local coordinate frame [P Xc Yp] 
attached on the robot platform measured from the horizontal axis. 
Three generalized coordinates can describe the configuration of 
the robot as equation (4). The mobile robot system considered 
here is a rigid body and the wheels are pure rolling and no 
slippage. This states that the robot can only move in the direction 
normal to the axis of the driving wheels. Therefore, the 
component of the velocity of the contact point with the ground, 
orthogonal to the plane of the wheel is zero[3, 17] i.e. 
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All kinematics constraints are independent of time, and can be 
expressed as 

0   )( =qqA T &                                                          (6) 

Where A(q)  is the input transformation matrix associated with the 
constraints. 

0   )( =qAC T                          (7) 

Where C(q) is the full rank matrix  formed by a set of smooth and 
linearly independent vector fields spanning the null space of 
AT(q). 

From equation (6) and (7) it is possible to find an auxiliary vector 
time function V(t) for all time ‘t’ 

  )( )( tVqCq =&                                                           (8) 

The constraint matrix in (6) for a mobile robot is given by  
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And C(q) matrix is given by 
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And  

V(t) = [v  ω]T                              (11) 

Where v is the linear velocity of the point ‘p’ along the robot axis 
and ω is the angular velocity. 

Therefore, the kinematics equation in (8) can be described as 
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Equation (12) is called the steering system of the vehicle. The 
control problem is to find a suitable control law so that the system 
can track desired reference trajectories. The control laws are 
designed to produce suitable left and right wheel velocities for 
driving the mobile robot to follow required path trajectories.  

3. ANALYSIS OF NEURO-CONTROLLER 
Artificial neural networks consist of a set of simple, densely 
interconnected processing units. These units transform signals in a 

Figure 1. Kinematics of mobile robot 
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non-linear way. Neural networks are non-parametric estimators 
which can fit smooth functions based on input-output examples. 
The neural network used is a four-layer perceptron [6]. The 
chosen number of layers was found empirically to facilitate 
training. The input layer has four neurons, three for receiving the 
values of the distances from obstacles in front and to the left and 
right of the robot and one for the target bearing. If no target is 
detected, the input to the fourth neuron is set to 0. The output 
layer has a single neuron, which produces the steering angle to 
control the direction of movement of the robot. The first hidden 
layer has 10 neurons and the second hidden layer has 3 neurons. 

These numbers of hidden neurons were also found empirically. 
Figure 2 depicts the neural network with its input and output 
signals. 

The neural network is trained to navigate by presenting it with 
200 patterns representing typical scenarios, some of which are 
depicted in Figure 3. For example, Figure 3a shows a robot 
advancing towards an obstacle, another obstacle being on its right 
hand side. There are no obstacles to the left of the robot and no 
target within sight. The neural network is trained to output a 
command to the robot to steer towards its left. 

During training and during normal operation, the input patterns 
fed to the neural network comprise the following components: 

{ } robot  thefrom distance obstacleLeft     y 1
1 =   (13a) 

{ } robot  thefrom distance obstacleFront     y 1
2 =   (13b) 

{ } robot  thefrom distance obstacleRight     y 1
3 =   (13c) 

{ } bearingTarget     y 1
4 =                    (13d) 

These input values are distributed to the hidden neurons which 
generate outputs given by [6]: 
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lay = layer number (2 or 3) 

j = label for jth neuron in hidden layer ‘lay’ 

i = label for ith neuron in hidden layer ‘lay-1’ 

{ }lay
jiW = weight of the connection from neuron i in layer ‘lay-

1’to neuron j in layer ‘lay’ 

f(.) = activation function, chosen in this work as the hyperbolic 
tangent function : 
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During training, the network output θactual may differ from the 
desired output θdesired as specified in the training pattern presented 
to the network. A measure of the performance of the network is 
the instantaneous sum-squared difference between θdesired and 
θactual for the set of presented training patterns: 

( )2

patterns
training all
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The error back propagation method is employed to train the 
network [6]. This method requires the computation of local error 
gradients in order to determine appropriate weight corrections to 
reduce Err. For the output layer, the error gradient { }4δ  is:  

Figure 3. Example training patterns 
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Figure 6.   Robot escaping from U shaped wall 
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Figure 4. Robot navigation software package (ROBNAV). 

Figure 5.  Static as well as dynamic obstacle avoidance 
behavior
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The local gradient for neurons in hidden layer {lay} is given by: 
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The synaptic weights are updated according to the following 
expressions: 
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where 

δ= momentum coefficient (chosen empirically as 0.2 in this work) 

η = learning rate (chosen empirically as 0.35 in this work) 

t = iteration number, each iteration consisting of the presentation 
of a training pattern and correction of the weights. 

The final output from the neural network is: 
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It should be noted learning can take place continuously even 
during normal target seeking behaviour. This enable the neural 
controller to adopt the changes in the robot’s path while moving 
towards target. The proposed neural controller and kinematics 
gives steering angle from wheel velocities based on the 
environmental conditions.  

4. SIMULATION RESULTS 
The simulations were conducted with the ROBNAV software 
being developed in the laboratory using C++ [10]. Figure 4, show 
a typical screen of the software. It can be noted that, in addition to 
the neural network based navigation, the software also allows 
other navigation control. To demonstrate the effectiveness and the 
robustness of the proposed method, simulation results on mobile 
robot navigation in various environments are exhibited.  

The obstacle avoidance behavior is activated when the reading 
from any sensors are less than the minimum threshold values. 
This is how the robot determines if an object is close enough for a 
collision. When an object is detected too close to the robot, it 
avoids a collision by moving away from it in the opposite 
direction. Collision avoidance has the highest priority and 
therefore, it can override other behaviors, in this case, its main 
reactive behavior is decelerating for static as well as dynamic 
obstacle avoidance as shown in Figure 5.  

The wall following behavior mode will be adopted when the 
mobile robot detects an obstacle in the front while it is moving 
towards target along the left or right side of the wall, the mobile 
robot may turn left or right because presence of  obstacle in the 
front. Another special condition appears as the mobile robot 
detects an obstacle in the front while the target tracking control 
mode is on operation. In this case, the fixed wall following 
behavior should be firstly performed, that is, the mobile robot 
must rotate clockwise or counterclockwise such that it can align 
and move along the wall (Figure 6). In absence of wall following 
behavior the robot is incapable of reaching the goal position when 
its en count U shaped or dead end obstacles on their path. In such 
a situation the robot should keep on heading towards the goal 
position. But when it moves towards the goal position, the robot 
also comes closer to the obstacles. Any obstacle-avoidance 



Figure 8. Robot escaping from dead end obstacle 
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behavior except wall following behavior would make the robot 
divert from its goal position. When robot move in large U shape 
obstacle, at the initial stage, the robot runs directly toward the 
target, since the obstacles sensed are far away from the robot. 
Then, the robot makes a turn to left, in order to avoid the 
obstacles at the direct front. Since the target is located to the right 
side of the robot, the behavior of approaching target tries to make 
the robot turn to the right. Contrarily, the obstacle-avoidance 
behavior makes the robot move away from the obstacles. As a 
result, the robot moves into the right, and the target orientation is 
increasing gradually. Consequently, the robot travels along the 
indefinitely loop in this concave trap as shown in Figure 7. To 
avoid this loop robot must have wall following behavior, when 
the robot is moving to a specified target through a U shaped 
obstacle or narrow channel, it must reflect following edge 
behavior so that robot may locate, find and reach the specified 
target as shown in Figure 6 and escape from dead end shown in 
Figure 8.  

When the acquired information from the sensors shows that there 
are no obstacles around robot, its main reactive behavior is target 
steer. Neural controller mainly adjusts robots motion direction 
and quickly moves it towards the target if there are no obstacles 
around the robot as shown in Figure 5. In the proposed control 
strategy, reactive behaviors are formulated and trained by neural 
network.  

To verify the superiority of the controller the results from the 
proposed neural controller for mobile robot have been compared 
with the result from fuzzy controller by Pradhan et al.[12] has 
been compared from proposed neural controller of mobile robot 
(Figure 9 ). They shows a very good agreement.  

Figure 9 (a). Navigation path of mobile robot using 
fuzzy controller by Pradhan et al. 

Figure 9 (b). Navigation path of mobile robot using 
proposed neural controller  

Figure  9. Result comparisons with Pradhan et al. 



5. CONCLUSIONS 
The simulation results are compared with the results obtained 
from the other investigation and they are in very good agreement. 
Back-propagation neural network technique has been used for 
making the controller. Software has been developed using C++  to 
get the simulation results. The developed neural controller has got 
the following salient feature:  

1. Avoid any static as well as dynamic obstacle along the path. 

2. The robot rapidly recognizes its surroundings which provides 
sufficient information for path optimization during 
navigation. 

3. The proposed Neural controller successfully be applied to 
dynamic as well as static environments. 

4. The proposed Neural controller is  simple but efficient tool 
for mobile robot navigation, especially in a dynamic 
environment. 

5. Training patterns of each network can be generated by 
simulation rather than by experiment, saving considerable 
time and effort. 

In the future analysis a hybrid controller can be formed for more 
efficient navigational the mobile robots. 
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