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Abstract—A probability distribution model is proposed in this 
paper. Fourier Transform of a unit rectangular pulse, whose 
width is a random variable with Gaussian distribution, is used 
to derive the probability density function (p.d.f.) in the 
frequency domain. Result of the mathematical derivation is an 
exponential mathematical function involving an infinite 
summation over all integers. The projection theorem is used to 
arrive at the exact probability density function. To verify this 
experimentally, a randomly generated sample of Gaussian 
numbers, representing the pulse width is mapped onto the 
frequency domain, and the resulting points have a certain 
probability distribution, which matches with the theoretically 
proposed function. 

Keywords— Probability Density Functions, Gaussian 
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I. INTRODUCTION 
Mathematical analysis for transformation of a signal 

from time domain to frequency domain using the probability 
model is an important research topic. Ref. [1] provides a 
new derivation for the power received by an antenna in a 
reverberation chamber using Probability Density Function 
(PDF). Probability Density Function is analytically 
computed in [2] for the output noise of an interferometer. 
Conditional probability density function of a time-varying 
random signal in the presence of additive Gaussian noise is 
examined in [3]. The probability density function is used in 
[4] for the field propagation in wall tunnel. In [5] 
uncertainty bounds in frequency response function 
measurements are calculated using analytic expression of 
the probability density function. Though probability density 
function is used in different applications, its application in 
frequency domain modeling is yet to be explored. 

 Some original techniques for frequency domain 
modeling are described in [6,7,8]. A novel technique for 
frequency domain modeling is given in [9]. An efficient 
frequency-domain modeling and simulation method of a 
coupled interconnect system using scattering parameters is 
described in [10]. Application of frequency domain 
modeling are described in [11] for STATCOM is, and in 
[12] for HVDC systems. An approach to direct frequency-
domain representation of an external system of any size or 
complexity is presented in [13].  

Exact mathematical analysis for transformation of a 
signal from time domain to frequency domain using the 

probability density function is done in this paper, based on 
[6]-[8]. This provides insight into mapping of the statistical 
variation of a parameter of a signal, on to the variation of its 
frequency components in the frequency domain. Also the 
idea is to find out whether exact analysis can yield 
techniques that have a feasible computational complexity, 
with respect to existing techniques for estimation of 
statistical parameters. This in turn helps to classify signals 
or parts of signals (as in their frequency components) 
according to different application specific probability 
patterns. For this a unit rectangular pulse is chosen as a test 
signal. Its width is chosen as the statistically varying 
parameter, with Gaussian distribution. 
  

II.    THEORETICAL PROPOSITION 

A.  Problem Formulation 
A unit rectangular wave is considered, represented by 

the function:  
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Where, τ  is the pulse width and t is time.  
This rectangular wave has a width τ  which is a random 
variable. The distribution of this random variable is 
Gaussian and is given by the probability density function 
(p.d.f.): 
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Here, μ  is the mean width of the square wave, and σ  is the 
standard deviation of the random variable τ  (i.e., the 
standard deviation of the width of the rectangular pulse). 
The frequency domain description of this pulse is given by 
its Fourier Transform: 
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Therefore  

 G )(ω = )2/sin(2 ωτ
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  =  )2/(sinc ωττ  (2) 
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Equation (2) is of the form G = Func( τ ), the p.d.f. of 
random variable τ  being Gaussian. The p.d.f. of function G 
is derived in the following section. 

B.     Derivation 
Since value of sine function varies from ─1 to +1, the range 
of function G is obtained as follows. 
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From (2) the inverse trigonometric relation is obtained as 
follows. 
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In (4) n  is an integer (zero, positive or negative). Here the 
sine inverse term refers to the principal values of the angle 

2
Gω . 

This value ∋   ( 0 , π /2)   if   
2
Gω  > 0  

        and    ∋  (0, π− /2)    if   
2
Gω <0    

Hence, (4) represents the inverse circular functions those 
map from G to τ . It is to be noted the mapping between G 
and τ  is a one many correspondence. So, there exist 
infinite number of mutually exclusive inverse functions 
mapping from G to τ . Keeping this relation in mind the 
probability density function (p.d.f.) of G is derived by 
applying the projection theorem for transformation of 
random variables.  

Suppose X is a continuous random variable with 
probability distribution f(x). Let Y = u(x) define a 
transformation between values of X and Y, that is NOT a 
one to one. If the interval over which X is defined, can be 
partitioned into k mutually disjoint sets such that each of the 
inverse functions:   
 1x  = 1w (y), 2x = 2w (y) …. kx = kw (y),  
of y=u(x),  defines a one to one correspondence, then the 
probability distribution of Y is: 

 |J|))y(w(f)y(g
k
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=
×=  

iJ  is the Jacobian of each inverse function  and is defined 
as: 

  )y(wJ '
ii = ,    i = 1, 2, 3, ……..k 

Here,   )n,G(InvFuncn =τ  as in (4) represents the infinite 
inverse functions such that each is a one to one 
correspondence for infinite mutually disjoint sets of values 
over which τ  is defined.  
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It is to be noted that nJ  is independent of n and hence can 

be taken out of the ∑ sign. Also, 
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Hence, the probability distribution function of G is 
formulated. 
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ω is real varying from – ∞ to + ∞ .  
Equation (7) is the required p.d.f. It must be noted that (7) 
represents a summation of terms over integer variable n for 
each frequency ω  (which varies from – ∞  to + ∞ ). 

C. Plotting of Probability Function 
The probability distribution is plotted using MATLAB. 

Equation (7) represents an infinite number of probability 
distributions one for each frequency, which itself can vary 
continuously from – ∞ to + ∞ .  
Issues: 
1. The p.d.f. is plotted keeping the frequency fixed at 2 π  

rad/s (or 1hz).  
2. The 2nd issue is that the function to be plotted consists of 

an infinite summation over integer n. Hence all values of 
n for which there is a significant contribution are added. 
This value of n turns out to be from –4 to +4 (for 1hz 
frequency) after which the order of probability density 
becomes very small and hence can be safely ignored. 

Under these two stipulations the function to be plotted is 
given by: 

 ∑
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The plot of probability density versus G with unity standard 
deviation is shown in Fig. 1. 
 

213

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on September 17, 2009 at 07:01 from IEEE Xplore.  Restrictions apply. 



 

 
                   

Figure 1.  Probability density function vs. G with standard deviation = 1 
[equation (9)-(10)] 

D.   Inferences and Implications  
A number of interesting points are observed from the 

mathematical expression as well as the plot. Those are listed 
below. 
1. From (2), G is purely real. It implies the p.d.f. expression 

(as well as plot) is for the probability distribution of the 
magnitude of a particular frequency component (1hz).  

2. The most interesting part is the nature of this curve. The 
probability of G is minimum at the center of its range 
and increases as the limits on either side are approached. 
The area under the curve is approximately unity. 

3. The range of values of G, divided into class intervals, is 
taken to be 

ω
<<

ω
−

2G2 . This means the range of variation 

in the magnitude of G is inversely proportional to the 
frequency ω . Hence at higher frequencies the oscillation 
in the amplitude of G decreases. Also the magnitude of 
G decreases as the frequency increases. 

4. For the 1hz frequency, summation over 9 values of n 
gave sufficiently accurate results. For other frequency 
components, the range of values of n over which the 
contributions are significant, are added.   

5. This is the p.d.f. of Fourier transform of a function, one 
of whose parameter τ , is normally distributed with 
standard deviation equal to one. Distribution of G with 
standard deviation of τ  as 2 and 4 are plotted in Fig.2 
and Fig.3.      

6. It is seen from Fig.2 and Fig.3 that as σ  increases, the 
curve becomes flatter at the center. The magnitude of G 
at the range limits increase. This can be interpreted with 
greater fluctuations in the values of G as the variable τ  
becomes more and more flat in its normal distribution. 
This is shown in the plots. 

 
Figure 2.  Probability density vs. G with standard deviation =2 

 
Figure 3.  Probability density vs. G with standard deviation = 4. 

III.  EXPERIMENTAL ANALYSIS 

A.  Experimental Design  
Subsequent to above theoretical derivation, an 

experiment is done in order to confirm the analysis. For this 
the basic algorithm is as follows. 
1. A sample of random numbers that are Gaussian 

distributed is generated. This is because the width of the 
rectangular pulse is assumed to be Gaussian distributed. 
The set of these generated data points called iX  
represent the statistically random variable τ , the 
rectangular pulse width. 

2. In the next step, the Fourier Transform of the pulse at 
these generated data points is computed. The value of 
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G )(τ  over the entire range of data points that represent 
the statistically varying width τ  keeping the frequency 
fixed is computed. For conducting the random trial the 
frequency ω  is arbitrarily fixedat 2 π  rad/s (or 1hz ). 

3. This set of computed values is denoted as 
~
G . The data 

points of 
~
G  are distributed with a certain probability 

pattern. The experimental probability density of 
~
G  is 

plotted. 

4. The range of 
~
G  is divided into 20 equal class intervals. 

The MATLAB program computes the frequency of the 
data points in each interval. 

The plot obtained experimentally for 1hz frequency is 
shown in Fig. 4 as histogram. 
 

 
Figure 4. Histogram showing distribution of Fourier Transform of   

randomly generated Gaussian data points 

B.  Comparative Analysis  
The histogram of Fig. 4 is compared with the curve that is 
obtained from the theoretical calculations, and shown in 
Fig.5. 
 

 

Figure 5. Comparison of experimental (solid line) and theoretical (dotted 
line) p.d.f. 

IV. CONCLUSIONS 
1. The outcome of the experimental plot when 

superimposed on the theoretical plot is seen to match 
remarkably, which confirms that the mathematical 
analysis is pretty accurate. 

2. It is found that the probability density function is U 
shaped at the 1Hz frequency as well as for higher 
frequency components that are investigated. It can be 
concluded that the probability of the frequency 
component taking on the two extreme values of the 
magnitude range is maximum and taking on values near 
center is minimum. 

3. As the pulse width becomes more and more deviant 
statistically ( σ  increases), the p.d.f. acquires a flatter 
shape at the center and higher magnitude at the edges. 
This can be interpreted as increased fluctuations in the 
magnitude. 

4. As frequency is increased, the range of variation of 
magnitude (─2/ ω  to 2/ ω ) decreases. This is consistent 
with the fact that in case of a Sinc Function, the 
amplitude of frequency response decreases as frequency 
increases.  

5. One important issue is the factor n. The p.d.f. is a 
summation of a complicated exponential function over 
the integer n. It turns out that the series is convergent 
and in this case the sum is taken for 9 values of n (from 
–4 to +4). The plot for a frequency of 10Hz is observed, 
and found that the sum is to be taken over greater 
values of n from –40 to +40. This is a clear indication 
of the fact that as frequency of interest increases, so 
does the contribution of higher value n terms. In order 
to obtain a theoretical p.d.f. plot for a high frequency 
component, the summation over a greater value of n is 
to be taken. 
The exact analysis technique that is used to study the 

probability patterns of a signal magnitude in the frequency 
domain, when one of its parameters is a random variable can 
be further extended. In actual applications where the 
variations are unknown and at the same time it is not 
possible to study a large sample set (such as biomedical 
signals), then suitable bi-variate or multivariate probability 
models can be constructed for their frequency domain 
representation. This is particularly important because, not 
just the pulse width, but its magnitude and phase should also 
be considered as random variables because they too show 
probabilistic variations. Hence, given such a non- 
deterministic signal, the uncertainty is translated to the 
frequency domain. This is done to get an idea of exact 
fluctuation of different frequency components in their 
‘probability space’. This in turn can be utilized for better 
design of systems that are required to deal with such signals. 
If the signal under study is the output response of a control 
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system, then such an analysis could lead to a fresh approach 
to diverse topics like robust stability of control systems.  
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