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ABSTRACT 

In this paper Q self-orgnriizirig firzzy-neiircrI network 
with a new learning mechanism and rule optimization using 
genetic ulgoritltin (GA) is proposed fbr locid forecasting l71c 
number of rules in the inferencing layer is optimized using 
genetic nlgoritkni and an appropiare fitness jiinction. We 
devise Q learning dgorithni for. updating the connec~ing 
weights as well as the structure of the membership functions of 
the network. The proposed algorithm exploits the notion of 
error back propagation. The network weights are initialized 
with random weights inslead of any preselected ones. The 
performance of the network is validated by extensive 
sitnulation results using practical data ranging over a period 
of hvo years. The optiritized frizzy rieirrol nefwork provitlcs on 
accurate prediction of electrical load in a time frame varying 
fiom 24 to 168 hours ahead. The algorithm is adaptive and 
performs much better than the existing ANN techniques used 
for load forecasting. 

LMTRODUCTION 

A number of algorithms and techniques has been 
suggested for the load prediction problems during the last two 
decades. The time-series and regression techniques are two 
major classes of conventional statistical algorithm, which are 
inefficient for providing acceptable accuracy limits. Artificial 
Neural Networks (ANN) have been proposed as a powerful 
tool for short-term load forecasting problems. It is hiown hat ,  
Artificial neural networks do not require any explicitly defined 
relationship between input and output variables. The 
corresponding mapping between the input and output is 
obtained using a training algorithm. The ANN modeling needs 
only the selection of input variables, thus avoiding the 
difficulties associated with conventional modeling processes. 
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A partinlly coniicctcd network [ 1,2] coiisis~ing of 
main and supporting blocks is also proposed, which makes use 
of model reference and functional relationships betwcen input 
(e.g. past load, weather, day type and hour of the day) and 
output (next time step load). The various training schemes 
proposed include a minimum-distance based strategy [3,4] to 
identify the appropriate historical patterns of load and 
temperature. Both the above mentioned approaches use back- 
propagation training algorithm to train and update the model 
parameters. 

Expert Systems provide a symbolic approach and 
cxploit human expertise by capturing the knowlcdgc of 
domain-experts and operators in the form of rules and 
symbols. The heuristic feature of an expert system provides an 
excellent method for load forecasting. Fuzzy logic based 
expert system for load forecasting requires development of a 
fuzzy rule base, which relies upon detailed knowledge of the 
parametric variation of the load pattern. Recently, Fuzzy- 
Neural-Nets (FNN) have been applied for load forecasting 
[5,6]. Usually, two approaches are adopted for implementing 
these FNNs. One of the approaches handles the fuzified input 
data; in the second approach the weights of the network are 
coiiiputed based upon a fuzzy rule base without fuzzifying the 
input data. Neural Network based modcls for forccasting 
problems are less complex than fuzzy logic based systems. 
However, the simplicity is at the cost of an explicitly dclincd 
relationship between the individual inputs and overall model 
paramcters. Fuzzy logic based systems allow some insight into 
the model parameters with the help of membership functions 
and rules. 

The objective of the present approach is to study a 
self-organizing Fuzzy-Neural-Network (FNN) which 
combincs self-organizing capability of ncural networks and 
fuzzy logic reasoning attributes. The network modeling stai-ts 
with random set of weights and hence an arbitrary set of fuzzy 
sets. The nctwork is initialized with sufficiently largc nuinbcr 
of rule- nodes which subsequently get optimized using the 
genetic algorithm. We devise an adaptive mechanism for 
weight updation together with updation of the associated 
parameters of fuzzy membership function. The training 
algorithm exploits the notion of error back propagation. 



Further the genetic algorithm [7,8] is used to optimize the 
number of rule nodes in the fuzzification layer by 
manipulating a population of strings that represent different 
potential solutions, each corresponding to a sample point from 
the search space. 

The following section (Section 11) describes the 
structure of the Fuzzy Inference System (FIS) and the choice 
of input variables. Section I11 describes the training and 
structure optimization procedures using a genetic algorithm 
and the simulation results are given in section IV. The network 
is trained and tested using a load-data of Virginia Utility, 
U.S.A. over a period of 2 years. 

11. OVERVIEW OF THE PROPOSED APPROACH 

One of the salient aspects of Fuzzy Inference System 
(FIS) is the determination of the knowledge base (KB) which 
consists of the following subsystems: 

Mechanism for developing mcmbcrsliip 

Fuzzy reasoiling mechanism 
hictions 

Number of rules and the rule base. 

We present in this section the FIS alongwith the 
goveming equations. 

Fig.1 shows the architecture of the fuzzy neural network, 
comprising input, hzzification, inference and defuzzification 
layers. Further the network can be visualized as consisting of 
N inputs, with N neurons in the input layer and R rules, with R 
neurons in the inference layer. There are NxR neurons in the 
fuzzification layer and K neurons for output layer. The signal 
propagation and basic function in each layer of the FNN is 
introduced in the following. 

The input liiyer consists 01.x~ , i = 1,2, ... N, along with 
unity. Each neuron in the fuzzification layer represcnts a fizzy 
membership fiinction for one of the input variables, The 
activation function used in this layer is Anet,,) = 

exp(-lrretvl'" ) and the input to these neurons net, =i~ ' ,~~  xl + 
w ~ ,  with wVI and wy0 being the connecting weights between 
input layer and fuzzification layer. 

Thus, the output of the kzification layer becomes 

Where p,, is the value of bzzy membership function of 
the r"' input variable corresponding to thef" rule. 

Each nodej in the inference layer is denoted by n, which 
multiplies the input signals and the output of the node 
becomes the result of product. Therefore, the output of the 
layer becomes 

N 
p j 3 xz,*.*.*.x'N = n P,j (XI (2) 

. I  

With V,k being the output action strength of the kth output 
associated with the jth rule and utilizing weighted sum 
defuuification, the network output becomes 

j i  

It is found that the fuzzy neural network is easier to 

cpJv j  in  the train with y=CpJ vj instead of y = - 
' P  j 

defuzzification layer. This has been clearly mentioned in 
reference (9)of this paper. Equation(3) is similar to the output 
obtained in a radial basis functions nc~iral network. 'fhc initial 
weights in V are the centers of output variable fuzzy 
menibership functions. 'I'he range of the desired load output 
data is divided into R intervals as there are R number of rules. 
The initial vJ (j=1,2,,. . .,R) values are set to be the central value 
of these I< intervals. The central values will, however, dcpcnd 
on the number of load and weather patterns used for training 
the network. Once tlie initial weights v, are chosen as 
mentioned above, the weights are updatcd at every itcration 
during the training as shown in equation (9) using an LMS 
:ilgoriIlini. For applicalion of GAS to opliiiiizc Llic i i u i i i l w  of' 
rules in the inferencing layer, this number is chosen as a 
paranietcr (r~ilc node) that nccds to bc coded. In this study this 
variable is represented as a 10-bit binary number. Thus the 
cluomosome in this case would contain a gene consisting of 
10 binary digits. 
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111. TRAINING 

Back propagation (BP) algorithm, which is the most 
popular method for neural network design, is being exploited 
to update parameters of the Fuzzy Neural network. 

The error function E of the network be 

Where t k  is the desired output in the klh output node. 
The parameter updation equations for the weights 

between tlie inference and output layers are: 

Similarly, 



The fuzzy membership function paraieter is updated as 

l,(n) = l , (n- l )+Al, j (n)  (1 1) 
Where AIv (n) = q6,yi + cullv ( n  - 1) 

and yI=-pulog,(/wVlxi+wuO I I  ) wulxl + w i j 0 ~ ( 1 2 )  

We also tune the value of the learning parameter ‘17 as 
q ( k )  = q ( k  -l)+ 0.2 E (k) + 0.1 E ( k  -1) 

The learning parameters are updated till some 
stopping criterion is reached: 
E S , o r  K 2 I,,, 
wheree > 0 and I,,, is tlie maximum number of iterations 
allowed. In tlus implementation I,,, = 2400 

During training, the number of rules is increased 
from 1 till a satisfactory performance of the network is found 
using a Genetic algoritluii. The learning rate ‘q’ which 
controls the rate of convergence initially set to 0.2 and is 
reduced gradually to 0.01 and the momentum constant ‘a’, 
added to speed up the training and avoid local minima, is kept 
at 0.6 throughout. The initial weights are randomly selected in 
the interval [-I, +1] and Zl is initialized to 2. The number of 
iteration is set to 5000 in all cases. The training is continued 
till E(n)<c at all points for a window length of 100 or the 
number of iteration reaches its maximum. The value of E is 
taken to be 1 *e-14 during training. 

A. Model Optimization 

Genetic algorithms (GA) can be viewed as a general- 
purpose search method, an optimization method, or a learning 
mechanism, based loosely on Darwinian principles of 
biological evolution, reproduction and “the survival of the 
fittest” along with genetic recombination. 

GA’s niaintain a set of candidate solution called a 
population. Candidate solutions are usually represented as 
strings of fixed length, called chromosomes, coded with 
binary character set. Given a random initial population GAS 
operate in cycles called generations. 

The basic optimization of rule nodes is started as follows: 
A population of P candidate solutions encoded in 

the binary strings are generated at random. The fitness 
&#) corresponding to each candidate solution is 
computed. In this problem fitness function is defined as 

, k = iteration count (13) 
k + error fkm = 

Where, error represents the error at the output node of the 
fuzzy neural net resulting from a particular candidate solution. 
Offsprings are generated by applying two point crossover 
operator and mutation operators. We used the following 
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selection mechanism for selection of the offspring for the ncxt 
generation: 

If the average fitness of the offspring is more thm 
that of the parents, then they are considered as parents for the 
next generation, otherwise parents are retained for the new 
generation. Thus out of 2P population P candidate solutions 
are considered for the next generation by using the selection 
mechanism. The crossover and mutation probabilities are 
taken as P, =0.6 and P,,, = 0,O. 1 , respectively. 

The above process is repeated until the stopping 
criterion is reached. The algorithm is stopped when more than 
half the population has equal and high fitness. Here, each 
string of the entire population represents a rule. The 
optimization process of the best number of rules in a 
population over each generation is illustrated in Fig. 2(a). 
After 98 generations, the value of the best number of rules in 
each generation is found to be R = 14; where R is the number 
of Rule nodes and is initially chosen as 5. 

In the above procedure, the rule nodes which result in 
tlie output error close to zero over the cntire training scl are 
searchcd and the node that does not contribute significantly to 
the model output are omitted keeping an eye over the model 
performance. In a similar way, the inputs for which the fuzzy 
membership grade is unity or close to unity over the entire 
twining set are traced down and are omitted from the network. 
The fitness value in each generation is shown in Fig. 2(b). 
Here we see the fitness value settles around 0.985 after 100 
generations. However, we find the variation in the fitness 
values are very small. While operating in real-time 
environment, it is imperative that the load forecasting system 
should be able to adapt to changing conditions. We achieve 
this objective by the following methodology: 

Before appreciable change in the load pattern is 
encountered the network is operated in prediction mode. 
Suppose at Ph time-step it is observed that the error in 
prediction is showing a gradual-increasing trend, this can be 
assumed that a substantial change in the load pattern is 
occurring. In order to reduce the error within the desired 
performance level, we retain the network using available data 
up to time-step. After lraining we again usc the 
network for forecasting. 
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IV. LOAD FORECASTING RESULTS 

For forecasting load time series in real-time it is 
imperative that the forecasting system should be able to handle 
non-stationary data. To achieve this adaptation, the optimized 
weights are used fiom the training set to forecast the first day 
load. For our simulation studies 5-day input nodes(N) and 14 
rule nodes ( R) are ultimately retained in the final forecasting 
model. After the end of the day the forecast model parameters 
are updated till the error becomes significantly small. The 
number of iterations required for this purpose is very small 
and once the new weight vector is established, this set will be 
used for forecasting of load over the next 24 hours. The hzzy- 
neural network based load model is chosen to be different for 
Lhe weekdays (Monday through Friday) and weekends 
(Saturday and Sunday). Holidays and special event days will 
have separate load model. 



As the weekends are excluded fiom the la set of 
database for the weekdays the weight vector obtained after the 
forecast of Friday load is used to predict the load on Monday. 
For one-week ahead forecasts, the adaptation is done once a 
week that is at the end of the week when the entire load profile 
for the whole week will be available. However, if the load 
pattem changes appreciably, which can be identified by 
observing the growing prediction error, the *-neural 
network model is retrained using the available data and the 
prediction is restarted with the new set of weight vector. 

The mean absolute percentage ( W E )  is 
used to test the performance of tlie model, which is defined as 
follows: 

forecastedload-actual load XI 00 

actual load 1 (14) MAPE=(lIN)C NI 
i=l 

Where, N is the number of patterns in the data set used to 
evaluate the error and the accuracy of the load forecasting 
model. 

The abnornial data obtained during thunderstorms, 
and faults in transmission systems are not considered for the 
evaluation of the new load prediction model. Holidays are 
considered separately along with the weekends for building 
the forecasting model to predict the loads during these days. 
The special holiday data in the past and the weekend data are 
used to train the forecasting model before the forecasting of 
load during holidays are taken up. 

The proposed scheme is validated using practical data 
collected from the Virginia Utility, USA. We have carried out 
estensive siiiiulations to validate our new approach. To 
evaluat~ tlie performance of the proposed network 
architecture, it is used to forecast both one-day and one-wcek 
ahead peak and average load. 

The 24-hours ahead peak load prediction over 4- 
weeks in winter is shown in Fig.3(a) and Fig. 3(c). The 
corresponding percentage of error is shown in Fig.3 (b) and 
Fig. 3(d) respectively. It is observed fiom these figures that 
the predicted output closely follows the actual load pattern and 
the percentage of error is mostly .within f2.0% (except in 
one occasion). From Fig.3(a)-(d) it is clear that the short-term 
load prediction in winter proposed is better than that of the 
summer. The degradation in performance of sumnier season 
can be attributed to abrupt variation of weather pattem in 
summer season. 

The 24-110~~s and 168-hours ahead average load 
forecast over 4-weeks in winter are shown in Fig.4(a) and 
Fig.4(b), respectively. It is observed that the average load 
forecast is better than that of peak load forecast. This 
phenomenon is due to the averaging effect of the load pattern. 

The results in FigS(a) shows the percentage of the 
nuiiiber of days different week-days lie witlin certain 
percentage of error (PE) over the whole year. Here, in the 
results for 24-hours ahead peak load forecast, we see that - out 
of all days of individual week-day types, 70% of the days are 
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within a PE value of 1.0, 80% within a PE of 2.0. Similarly, 
the percentage of number of days each week-day having 
different megawatt (MW) error (difference between actual and 
predicted load) is shown in Fig. 6(b). The results in Fig.S(b) 
show that almost 50% of .the days of any week-day type is 
within 20MW error range, 70% is within 40MW and 90% 
within 60 MW range for 24-hours ahead peak load forecast. 

The performance of the new time series forecasting 
model is compared to the existing ANN and FNN (Fuzzy 
Neural Network) based models. To evaluate the accuracy of 
the load prediction models, the forecasts of both 24-hours and 
168-hours ahead peak and average loads are considered. 
Fig.6(a) and Fig.6(b) show the percentage of errors for thc 
ANN, FNN, and self organizing FNN with genetic rule 
optimization (SFNN) for the month of January over a %-hour 
and 168-hour time fiame, respectively. The optimized SFNN 
model shows significant improvement in forecasting accuracy 
in comparison to ANN and FNN load prediction models. 

V. CONCLUSIONS 

In this paper we address the problem of load 
forecasting using a fuzzy neural network structure. The 
weights in different layers of the network are optimized using 
a novel update algorithm. The network performs satisfactorily 
starting from an initial set of random weights. Thus the 
problem of proper choice of initial weights is avoided. Again, 
the number of rules is’ determined using Basic Genetic 
Algorithm (BGA). The efficiency of the network is validated 
by selecting a practical load pattern in summer and winter. As 
summer load pattern is considerably temperature sensitive; the 
peak load forecast demonstrates the network’s efficiency. The 
wcekly MAPE value is mostly within 0.5-1.5% for 24-hours 
ahead peak load forecast and within 0.05-0.15Y0 for average 
load forecast. 
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